-
Notifications
You must be signed in to change notification settings - Fork 0
/
physics.py
460 lines (402 loc) · 16.4 KB
/
physics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#
# See the documentation for more details on how this works
#
# The idea here is you provide a simulation object that overrides specific
# pieces of WPILib, and modifies motors/sensors accordingly depending on the
# state of the simulation. An example of this would be measuring a motor
# moving for a set period of time, and then changing a limit switch to turn
# on after that period of time. This can help you do more complex simulations
# of your robot code without too much extra effort.
#
import functools
import operator
import typing
from phoenix6.sim.cancoder_sim_state import CANcoderSimState
from phoenix6.sim.talon_fx_sim_state import TalonFXSimState
from phoenix6.unmanaged import feed_enable
from wpilib import RobotController, SmartDashboard
from wpilib.simulation import DCMotorSim
from wpimath.geometry import Pose2d, Rotation2d, Transform2d, Translation2d, Pose3d
from wpimath.system.plant import DCMotor
import wpimath.kinematics
from pyfrc.physics.core import PhysicsInterface
import constants
from robot import MentorBot
from subsystems.drivesubsystem import DriveSubsystem
from subsystems.intakesubsystem import IntakeSubsystem
from util.advantagescopeconvert import convertToSendablePoses
from util.convenientmath import clamp, pointInCircle
from util.motorsimulator import MotorSimulator
from util.getsdarray import getSDArray
class SwerveModuleSim:
# pylint:disable-next=too-many-arguments, too-many-positional-arguments
def __init__(
self,
position: Translation2d,
wheelMotorType: DCMotor,
wheelMotorSim: typing.Callable[[], TalonFXSimState],
driveMotorGearing: float,
swerveMotorType: DCMotor,
swerveMotorSim: typing.Callable[[], TalonFXSimState],
steerMotorGearing: float,
swerveEncoderSim: typing.Callable[[], CANcoderSimState],
encoderOffset: float,
inverted: bool,
) -> None:
self.position = position
self.wheelMotorSim = wheelMotorSim
self.wheelMotorType = wheelMotorType
self.driveMotorGearing = driveMotorGearing
self.wheelMotorInternalSim = DCMotorSim(
self.wheelMotorType,
self.driveMotorGearing,
constants.kSimulationRotationalInertia,
)
self.swerveMotorSim = swerveMotorSim
self.swerveMotorType = swerveMotorType
self.steerMotorGearing = steerMotorGearing
self.steerMotorIntenalSim = DCMotorSim(
self.swerveMotorType,
self.steerMotorGearing,
constants.kSimulationRotationalInertia,
)
self.swerveEncoderSim = swerveEncoderSim
self.encoderOffset = encoderOffset + 0.25
self.multiplier = -1 if inverted else 1
def __str__(self) -> str:
return f"pos: x={self.position.X():.2f} y={self.position.Y():.2f}"
class SwerveDriveSim:
def __init__(self, swerveModuleSims: typing.Tuple[SwerveModuleSim, ...]) -> None:
self.swerveModuleSims = swerveModuleSims
self.kinematics = wpimath.kinematics.SwerveDrive4Kinematics(
*(module.position for module in swerveModuleSims)
)
self.pose = constants.kSimDefaultRobotLocation
self.outputs = None
def resetPose(self, pose) -> None:
self.pose = pose
def getPose(self) -> Pose2d:
return self.pose
def getHeading(self) -> Rotation2d:
return self.pose.rotation()
def update(self, tm_diff: float, robotVoltage: float) -> None:
deltaT = tm_diff
states = []
for module in self.swerveModuleSims:
module.wheelMotorInternalSim.setInputVoltage(
module.wheelMotorSim().motor_voltage
)
# print(module.wheelMotorSim().motor_voltage)
module.wheelMotorInternalSim.update(tm_diff)
wheel_position_rot = (
module.wheelMotorInternalSim.getAngularPosition()
/ constants.kRadiansPerRevolution
* module.driveMotorGearing
)
wheel_velocity_rps = (
module.wheelMotorInternalSim.getAngularVelocity()
/ constants.kRadiansPerRevolution
* module.driveMotorGearing
)
module.wheelMotorSim().set_raw_rotor_position(wheel_position_rot)
module.wheelMotorSim().set_rotor_velocity(wheel_velocity_rps)
module.wheelMotorSim().set_supply_voltage(
clamp(
robotVoltage
- module.wheelMotorSim().supply_current
* constants.kSimMotorResistance,
0,
robotVoltage,
)
)
module.steerMotorIntenalSim.setInputVoltage(
module.swerveMotorSim().motor_voltage
)
module.steerMotorIntenalSim.update(tm_diff)
swerve_position_rot = (
module.steerMotorIntenalSim.getAngularPosition()
/ constants.kRadiansPerRevolution
* module.steerMotorGearing
)
swerve_velocity_rps = (
module.steerMotorIntenalSim.getAngularVelocity()
/ constants.kRadiansPerRevolution
* module.steerMotorGearing
)
module.swerveMotorSim().set_raw_rotor_position(swerve_position_rot)
module.swerveMotorSim().set_rotor_velocity(swerve_velocity_rps)
module.swerveMotorSim().set_supply_voltage(
clamp(
robotVoltage
- module.swerveMotorSim().supply_current
* constants.kSimMotorResistance,
0,
robotVoltage,
)
)
module.swerveEncoderSim().set_raw_position(
-swerve_position_rot / module.steerMotorGearing + module.encoderOffset
)
module.swerveEncoderSim().set_velocity(
-swerve_velocity_rps / module.steerMotorGearing
)
wheelLinearVelocity = (
wheel_velocity_rps
* module.multiplier
* constants.kWheelRadius
* constants.kRadiansPerRevolution
/ constants.kDriveGearingRatio
)
state = wpimath.kinematics.SwerveModuleState(
-wheelLinearVelocity,
Rotation2d(
-swerve_position_rot
/ module.steerMotorGearing
* constants.kRadiansPerRevolution
),
)
states.append(state)
chassisSpeed = self.kinematics.toChassisSpeeds(states)
deltaHeading = chassisSpeed.omega * deltaT
deltaX = chassisSpeed.vx * deltaT
deltaY = chassisSpeed.vy * deltaT
SmartDashboard.putNumberArray(
constants.kSimRobotVelocityArrayKey,
[chassisSpeed.vx, chassisSpeed.vy, chassisSpeed.omega],
)
deltaTrans = Transform2d(deltaX, deltaY, deltaHeading)
newPose = self.pose + deltaTrans
self.pose = newPose
class NoteSim:
def __init__(self) -> None:
self.midlineNotes = constants.kNotesStartingMidline
self.blueNotes = constants.kNotesStartingBlueWing
self.redNotes = constants.kNotesStartingRedWing
self.loadingNotes = [
constants.kNoteLoadingStationPositionBlue,
constants.kNoteLoadingStationPositionRed,
]
def canPickup(self, note: Pose3d, botPose) -> bool:
if pointInCircle(botPose.translation(), note.toPose2d().translation(), 0.5):
return True
return False
def update(self, _tm_diff, bot: MentorBot):
SmartDashboard.putNumberArray(
constants.kSimNotePositionsKey,
convertToSendablePoses(
[
*self.midlineNotes,
*self.blueNotes,
*self.redNotes,
*self.loadingNotes,
]
),
)
# check whether intaking, update sensors according to position on field
intaking = bot.container.intake.state == IntakeSubsystem.IntakeState.Intaking
holding = (
bot.container.intake.state == IntakeSubsystem.IntakeState.Holding
or bot.container.intake.overrideIntake
)
atPose = bot.container.intake.intakeAtPosition()
botPose = Pose2d(*getSDArray(constants.kSimRobotPoseArrayKey, [0, 0, 0]))
hasNote = SmartDashboard.getBoolean(constants.kIntakeHasNoteKey, False)
if intaking:
notestate = hasNote
for stationObject in self.loadingNotes:
if self.canPickup(stationObject, botPose):
notestate = True
for blueWingNote in self.blueNotes:
# remove the note from the field
if self.canPickup(blueWingNote, botPose):
notestate = True
self.blueNotes.remove(blueWingNote)
for redWingNote in self.redNotes:
# remove the note from the field
if self.canPickup(redWingNote, botPose):
notestate = True
self.redNotes.remove(redWingNote)
for midlineNote in self.midlineNotes:
# remove the note from the field
if self.canPickup(midlineNote, botPose):
notestate = True
self.midlineNotes.remove(midlineNote)
SmartDashboard.putBoolean(
f"{bot.container.intake.intakeMotor.getNettableIden()}/fwdLimit",
notestate,
)
SmartDashboard.putBoolean(
f"{bot.container.intake.intakeMotor.getNettableIden()}/bckLimit",
notestate,
)
if holding and atPose:
SmartDashboard.putBoolean(
f"{bot.container.intake.intakeMotor.getNettableIden()}/fwdLimit",
False,
)
# shooting a note clears the note
feeding = bot.container.intake.state == IntakeSubsystem.IntakeState.Feeding
if feeding:
if hasNote:
pass # Logic for calculating a shot
SmartDashboard.putBoolean(
f"{bot.container.intake.intakeMotor.getNettableIden()}/fwdLimit",
False,
)
SmartDashboard.putBoolean(
f"{bot.container.intake.intakeMotor.getNettableIden()}/bckLimit",
False,
)
class PhysicsEngine:
"""
Simulates a drivetrain
"""
# pylint: disable-next=unused-argument
def __init__(self, physics_controller: PhysicsInterface, robot: MentorBot):
self.physics_controller = physics_controller
self.bot = robot
driveSubsystem: DriveSubsystem = robot.container.drive
frontLeftSim = driveSubsystem.frontLeftModule.getSimulator()
self.frontLeftModuleSim = SwerveModuleSim(
constants.kFrontLeftWheelPosition,
DCMotor.krakenX60(),
frontLeftSim[0],
constants.kDriveGearingRatio,
DCMotor.falcon500(),
frontLeftSim[1],
constants.kSteerGearingRatio,
frontLeftSim[2],
constants.kFrontLeftAbsoluteEncoderOffset,
constants.kFrontLeftDriveInverted,
)
frontRightSim = driveSubsystem.frontRightModule.getSimulator()
self.frontRightModuleSim = SwerveModuleSim(
constants.kFrontRightWheelPosition,
DCMotor.krakenX60(),
frontRightSim[0],
constants.kDriveGearingRatio,
DCMotor.falcon500(),
frontRightSim[1],
constants.kSteerGearingRatio,
frontRightSim[2],
constants.kFrontRightAbsoluteEncoderOffset,
constants.kFrontRightDriveInverted,
)
backLeftSim = driveSubsystem.backLeftModule.getSimulator()
self.backSimLeftModule = SwerveModuleSim(
constants.kBackLeftWheelPosition,
DCMotor.krakenX60(),
backLeftSim[0],
constants.kDriveGearingRatio,
DCMotor.falcon500(),
backLeftSim[1],
constants.kSteerGearingRatio,
backLeftSim[2],
constants.kBackLeftAbsoluteEncoderOffset,
constants.kBackLeftDriveInverted,
)
backRightSim = driveSubsystem.backRightModule.getSimulator()
self.backSimRightModule = SwerveModuleSim(
constants.kBackRightWheelPosition,
DCMotor.krakenX60(),
backRightSim[0],
constants.kDriveGearingRatio,
DCMotor.falcon500(),
backRightSim[1],
constants.kSteerGearingRatio,
backRightSim[2],
constants.kBackRightAbsoluteEncoderOffset,
constants.kBackRightDriveInverted,
)
self.swerveModuleSims = [
self.frontLeftModuleSim,
self.frontRightModuleSim,
self.backSimLeftModule,
self.backSimRightModule,
]
self.driveSim = SwerveDriveSim(tuple(self.swerveModuleSims))
self.noteSim = NoteSim()
driveSubsystem.resetSimPosition = self.driveSim.resetPose
self.gyroSim = driveSubsystem.gyro.sim_state
self.sim_initialized = False
self.motorsim = MotorSimulator()
self.motorsim.addFalcon(
robot.container.shooter.angleMotor,
1,
constants.kSimulationRotationalInertia,
)
self.motorsim.addFalcon(
robot.container.elevator.elevatorMotor1,
1,
constants.kSimulationRotationalInertia,
)
self.motorsim.addFalcon(
robot.container.elevator.elevatorMotor2,
1,
constants.kSimulationRotationalInertia,
)
self.motorsim.addFalcon(
robot.container.intake.pivotMotor,
1,
constants.kSimulationRotationalInertia,
)
self.motorsim.addFalcon(
robot.container.climber.climberMotor,
1,
constants.kSimulationRotationalInertia,
)
self.motorsim.addKraken(
robot.container.shooter.leftShootingMotor,
1,
constants.kSimulationRotationalInertiaFlywheel,
)
self.motorsim.addKraken(
robot.container.shooter.rightShootingMotor,
1,
constants.kSimulationRotationalInertiaFlywheel,
)
targets = []
for target in constants.kApriltagPositionDict.values():
x = target.X()
y = target.Y()
z = target.Z()
rotationQuaternion = target.rotation().getQuaternion()
w_rot = rotationQuaternion.W()
x_rot = rotationQuaternion.X()
y_rot = rotationQuaternion.Y()
z_rot = rotationQuaternion.Z()
targets.append(
[x, y, z, w_rot, x_rot, y_rot, z_rot]
) # https://github.com/Mechanical-Advantage/AdvantageScope/blob/main/docs/tabs/3D-FIELD.md#cones
SmartDashboard.putNumberArray(
constants.kFieldSimTargetKey,
functools.reduce(
operator.add, targets, []
), # adds all the values found within targets (converts [[]] to [])
)
# pylint: disable-next=unused-argument
def update_sim(self, now: float, tm_diff: float) -> None:
"""
Called when the simulation parameters for the program need to be
updated.
:param now: The current time as a float
:param tm_diff: The amount of time that has passed since the last
time that this function was called
"""
feed_enable(1 / 50)
if not self.sim_initialized:
self.sim_initialized = True
# self.physics_controller.field, is not set until simulation_init
self.gyroSim.set_raw_yaw(self.driveSim.getHeading().degrees())
# Simulate the drivetrain
voltage = RobotController.getInputVoltage()
self.motorsim.update(tm_diff, voltage)
self.driveSim.update(tm_diff, voltage)
self.noteSim.update(tm_diff, self.bot)
simRobotPose = self.driveSim.getPose()
self.physics_controller.field.setRobotPose(simRobotPose)
# publish the simulated robot pose to nt
SmartDashboard.putNumberArray(
constants.kSimRobotPoseArrayKey,
[simRobotPose.X(), simRobotPose.Y(), simRobotPose.rotation().radians()],
)