forked from vanhuyz/CycleGAN-TensorFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ops.py
234 lines (209 loc) · 7.38 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import tensorflow as tf
## Layers: follow the naming convention used in the original paper
### Generator layers
def c7s1_k(input, k, reuse=False, norm='instance', activation='relu', is_training=True, name='c7s1_k'):
""" A 7x7 Convolution-BatchNorm-ReLU layer with k filters and stride 1
Args:
input: 4D tensor
k: integer, number of filters (output depth)
norm: 'instance' or 'batch' or None
activation: 'relu' or 'tanh'
name: string, e.g. 'c7sk-32'
is_training: boolean or BoolTensor
name: string
reuse: boolean
Returns:
4D tensor
"""
with tf.variable_scope(name, reuse=reuse):
weights = _weights("weights",
shape=[7, 7, input.get_shape()[3], k])
padded = tf.pad(input, [[0,0],[3,3],[3,3],[0,0]], 'REFLECT')
conv = tf.nn.conv2d(padded, weights,
strides=[1, 1, 1, 1], padding='VALID')
normalized = _norm(conv, is_training, norm)
if activation == 'relu':
output = tf.nn.relu(normalized)
if activation == 'tanh':
output = tf.nn.tanh(normalized)
return output
def dk(input, k, reuse=False, norm='instance', is_training=True, name=None):
""" A 3x3 Convolution-BatchNorm-ReLU layer with k filters and stride 2
Args:
input: 4D tensor
k: integer, number of filters (output depth)
norm: 'instance' or 'batch' or None
is_training: boolean or BoolTensor
name: string
reuse: boolean
name: string, e.g. 'd64'
Returns:
4D tensor
"""
with tf.variable_scope(name, reuse=reuse):
weights = _weights("weights",
shape=[3, 3, input.get_shape()[3], k])
conv = tf.nn.conv2d(input, weights,
strides=[1, 2, 2, 1], padding='SAME')
normalized = _norm(conv, is_training, norm)
output = tf.nn.relu(normalized)
return output
def Rk(input, k, reuse=False, norm='instance', is_training=True, name=None):
""" A residual block that contains two 3x3 convolutional layers
with the same number of filters on both layer
Args:
input: 4D Tensor
k: integer, number of filters (output depth)
reuse: boolean
name: string
Returns:
4D tensor (same shape as input)
"""
with tf.variable_scope(name, reuse=reuse):
with tf.variable_scope('layer1', reuse=reuse):
weights1 = _weights("weights1",
shape=[3, 3, input.get_shape()[3], k])
padded1 = tf.pad(input, [[0,0],[1,1],[1,1],[0,0]], 'REFLECT')
conv1 = tf.nn.conv2d(padded1, weights1,
strides=[1, 1, 1, 1], padding='VALID')
normalized1 = _norm(conv1, is_training, norm)
relu1 = tf.nn.relu(normalized1)
with tf.variable_scope('layer2', reuse=reuse):
weights2 = _weights("weights2",
shape=[3, 3, relu1.get_shape()[3], k])
padded2 = tf.pad(relu1, [[0,0],[1,1],[1,1],[0,0]], 'REFLECT')
conv2 = tf.nn.conv2d(padded2, weights2,
strides=[1, 1, 1, 1], padding='VALID')
normalized2 = _norm(conv2, is_training, norm)
output = input+normalized2
return output
def n_res_blocks(input, reuse, norm='instance', is_training=True, n=6):
depth = input.get_shape()[3]
for i in range(1,n+1):
output = Rk(input, depth, reuse, norm, is_training, 'R{}_{}'.format(depth, i))
input = output
return output
def uk(input, k, reuse=False, norm='instance', is_training=True, name=None, output_size=None):
""" A 3x3 fractional-strided-Convolution-BatchNorm-ReLU layer
with k filters, stride 1/2
Args:
input: 4D tensor
k: integer, number of filters (output depth)
norm: 'instance' or 'batch' or None
is_training: boolean or BoolTensor
reuse: boolean
name: string, e.g. 'c7sk-32'
output_size: integer, desired output size of layer
Returns:
4D tensor
"""
with tf.variable_scope(name, reuse=reuse):
input_shape = input.get_shape().as_list()
weights = _weights("weights",
shape=[3, 3, k, input_shape[3]])
if not output_size:
output_size = input_shape[1]*2
output_shape = [input_shape[0], output_size, output_size, k]
fsconv = tf.nn.conv2d_transpose(input, weights,
output_shape=output_shape,
strides=[1, 2, 2, 1], padding='SAME')
normalized = _norm(fsconv, is_training, norm)
output = tf.nn.relu(normalized)
return output
### Discriminator layers
def Ck(input, k, slope=0.2, stride=2, reuse=False, norm='instance', is_training=True, name=None):
""" A 4x4 Convolution-BatchNorm-LeakyReLU layer with k filters and stride 2
Args:
input: 4D tensor
k: integer, number of filters (output depth)
slope: LeakyReLU's slope
stride: integer
norm: 'instance' or 'batch' or None
is_training: boolean or BoolTensor
reuse: boolean
name: string, e.g. 'C64'
Returns:
4D tensor
"""
with tf.variable_scope(name, reuse=reuse):
weights = _weights("weights",
shape=[4, 4, input.get_shape()[3], k])
conv = tf.nn.conv2d(input, weights,
strides=[1, stride, stride, 1], padding='SAME')
normalized = _norm(conv, is_training, norm)
output = _leaky_relu(normalized, slope)
return output
def last_conv(input, reuse=False, use_sigmoid=False, name=None):
""" Last convolutional layer of discriminator network
(1 filter with size 4x4, stride 1)
Args:
input: 4D tensor
reuse: boolean
use_sigmoid: boolean (False if use lsgan)
name: string, e.g. 'C64'
"""
with tf.variable_scope(name, reuse=reuse):
weights = _weights("weights",
shape=[4, 4, input.get_shape()[3], 1])
biases = _biases("biases", [1])
conv = tf.nn.conv2d(input, weights,
strides=[1, 1, 1, 1], padding='SAME')
output = conv + biases
if use_sigmoid:
output = tf.sigmoid(output)
return output
### Helpers
def _weights(name, shape, mean=0.0, stddev=0.02):
""" Helper to create an initialized Variable
Args:
name: name of the variable
shape: list of ints
mean: mean of a Gaussian
stddev: standard deviation of a Gaussian
Returns:
A trainable variable
"""
var = tf.get_variable(
name, shape,
initializer=tf.random_normal_initializer(
mean=mean, stddev=stddev, dtype=tf.float32))
return var
def _biases(name, shape, constant=0.0):
""" Helper to create an initialized Bias with constant
"""
return tf.get_variable(name, shape,
initializer=tf.constant_initializer(constant))
def _leaky_relu(input, slope):
return tf.maximum(slope*input, input)
def _norm(input, is_training, norm='instance'):
""" Use Instance Normalization or Batch Normalization or None
"""
if norm == 'instance':
return _instance_norm(input)
elif norm == 'batch':
return _batch_norm(input, is_training)
else:
return input
def _batch_norm(input, is_training):
""" Batch Normalization
"""
with tf.variable_scope("batch_norm"):
return tf.contrib.layers.batch_norm(input,
decay=0.9,
scale=True,
updates_collections=None,
is_training=is_training)
def _instance_norm(input):
""" Instance Normalization
"""
with tf.variable_scope("instance_norm"):
depth = input.get_shape()[3]
scale = _weights("scale", [depth], mean=1.0)
offset = _biases("offset", [depth])
mean, variance = tf.nn.moments(input, axes=[1,2], keep_dims=True)
epsilon = 1e-5
inv = tf.rsqrt(variance + epsilon)
normalized = (input-mean)*inv
return scale*normalized + offset
def safe_log(x, eps=1e-12):
return tf.log(x + eps)