-
Notifications
You must be signed in to change notification settings - Fork 55
/
objectives.py
executable file
·427 lines (316 loc) · 18.9 KB
/
objectives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""Library implementing different objective functions.
"""
import numpy as np
import lasagne
import theano
import theano.tensor as T
import theano_printer
import utils
class TargetVarDictObjective(object):
def __init__(self, input_layers, penalty=0):
try:
self.target_vars
except:
self.target_vars = dict()
self.penalty = penalty
def get_loss(self, average=True, *args, **kwargs):
"""Compute the loss in Theano.
Args:
average: Indicates whether the loss should already be averaged over the batch.
If not, call the compute_average method on the aggregated losses.
"""
raise NotImplementedError
def compute_average(self, losses, loss_name=""):
"""Averages the aggregated losses in Numpy."""
return losses.mean(axis=0)
def get_kaggle_loss(self, average=True, *args, **kwargs):
"""Computes the CRPS score in Theano."""
return theano.shared([-1])
def get_segmentation_loss(self, average=True, *args, **kwargs):
return theano.shared([-1])
class KaggleObjective(TargetVarDictObjective):
"""
This is the objective as defined by Kaggle: https://www.kaggle.com/c/second-annual-data-science-bowl/details/evaluation
"""
def __init__(self, input_layers, *args, **kwargs):
super(KaggleObjective, self).__init__(input_layers, *args, **kwargs)
self.input_systole = input_layers["systole"]
self.input_diastole = input_layers["diastole"]
self.target_vars["systole"] = T.fmatrix("systole_target")
self.target_vars["diastole"] = T.fmatrix("diastole_target")
def get_loss(self, average=True, other_losses={}, *args, **kwargs):
network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)
network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)
systole_target = self.target_vars["systole"]
diastole_target = self.target_vars["diastole"]
CRPS_systole = T.mean((network_systole - systole_target)**2, axis=(1,))
CRPS_diastole = T.mean((network_diastole - diastole_target)**2, axis=(1,))
loss = 0.5*CRPS_systole + 0.5*CRPS_diastole
if average:
loss = T.mean(loss, axis=(0,))
CRPS_systole = T.mean(CRPS_systole, axis=(0,))
CRPS_diastole = T.mean(CRPS_diastole, axis=(0,))
other_losses['CRPS_systole'] = CRPS_systole
other_losses['CRPS_diastole'] = CRPS_diastole
return loss + self.penalty
#def get_kaggle_loss(self, *args, **kwargs):
# return self.get_loss(*args, **kwargs)
class MeanKaggleObjective(TargetVarDictObjective):
"""
This is the objective as defined by Kaggle: https://www.kaggle.com/c/second-annual-data-science-bowl/details/evaluation
"""
def __init__(self, input_layers, *args, **kwargs):
super(MeanKaggleObjective, self).__init__(input_layers, *args, **kwargs)
self.input_average = input_layers["average"]
self.target_vars["average"] = T.fmatrix("average_target")
self.input_systole = input_layers["systole"]
self.input_diastole = input_layers["diastole"]
self.target_vars["systole"] = T.fmatrix("systole_target")
self.target_vars["diastole"] = T.fmatrix("diastole_target")
def get_loss(self, average=True, other_losses={}, *args, **kwargs):
network_average = lasagne.layers.helper.get_output(self.input_average, *args, **kwargs)
network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)
network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)
average_target = self.target_vars["average"]
systole_target = self.target_vars["systole"]
diastole_target = self.target_vars["diastole"]
CRPS_average = T.mean((network_average - average_target)**2, axis=(1,))
CRPS_systole = T.mean((network_systole - systole_target)**2, axis=(1,))
CRPS_diastole = T.mean((network_diastole - diastole_target)**2, axis=(1,))
loss = 0.2*CRPS_average + 0.4*CRPS_systole + 0.4*CRPS_diastole
if average:
loss = T.mean(loss, axis=(0,))
CRPS_average = T.mean(CRPS_average, axis=(0,))
CRPS_systole = T.mean(CRPS_systole, axis=(0,))
CRPS_diastole = T.mean(CRPS_diastole, axis=(0,))
other_losses['CRPS_average'] = CRPS_average
other_losses['CRPS_systole'] = CRPS_systole
other_losses['CRPS_diastole'] = CRPS_diastole
return loss + self.penalty
#def get_kaggle_loss(self, *args, **kwargs):
# return self.get_loss(*args, **kwargs)
class MSEObjective(TargetVarDictObjective):
def __init__(self, input_layers, *args, **kwargs):
super(MSEObjective, self).__init__(input_layers, *args, **kwargs)
self.input_systole = input_layers["systole:value"]
self.input_diastole = input_layers["diastole:value"]
self.target_vars["systole:value"] = T.fvector("systole_target_value")
self.target_vars["diastole:value"] = T.fvector("diastole_target_value")
def get_loss(self, average=True, *args, **kwargs):
network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)[:,0]
network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)[:,0]
systole_target = self.target_vars["systole:value"]
diastole_target = self.target_vars["diastole:value"]
loss = 0.5 * (network_systole - systole_target )**2 + 0.5 * (network_diastole - diastole_target)**2
if average:
loss = T.mean(loss, axis=(0,))
return loss + self.penalty
class RMSEObjective(TargetVarDictObjective):
def __init__(self, input_layers, *args, **kwargs):
super(RMSEObjective, self).__init__(input_layers, *args, **kwargs)
self.input_systole = input_layers["systole:value"]
self.input_diastole = input_layers["diastole:value"]
self.target_vars["systole:value"] = T.fvector("systole_target_value")
self.target_vars["diastole:value"] = T.fvector("diastole_target_value")
def get_loss(self, average=True, *args, **kwargs):
network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)[:,0]
network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)[:,0]
systole_target = self.target_vars["systole:value"]
diastole_target = self.target_vars["diastole:value"]
loss = 0.5 * (network_systole - systole_target) ** 2 + 0.5 * (network_diastole - diastole_target)**2
if average:
loss = T.sqrt(T.mean(loss, axis=(0,)))
return loss
def compute_average(self, aggregate):
return np.sqrt(np.mean(aggregate, axis=0))
def get_kaggle_loss(self, validation=False, average=True, *args, **kwargs):
if not validation: # only evaluate this one in the validation step
return theano.shared([-1])
network_systole = utils.theano_mu_sigma_erf(lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)[:,0],
lasagne.layers.helper.get_output(self.input_systole_sigma, *args, **kwargs)[:,0])
network_diastole = utils.theano_mu_sigma_erf(lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)[:,0],
lasagne.layers.helper.get_output(self.input_diastole_sigma, *args, **kwargs)[:,0])
systole_target = self.target_vars["systole"]
diastole_target = self.target_vars["diastole"]
if not average:
CRPS = (T.mean((network_systole - systole_target)**2, axis = (1,)) +
T.mean((network_diastole - diastole_target)**2, axis = (1,)) )/2
return CRPS
else:
CRPS = (T.mean((network_systole - systole_target)**2, axis = (0,1)) +
T.mean((network_diastole - diastole_target)**2, axis = (0,1)) )/2
return CRPS
class KaggleValidationMSEObjective(MSEObjective):
"""
This is the objective as defined by Kaggle: https://www.kaggle.com/c/second-annual-data-science-bowl/details/evaluation
"""
def __init__(self, input_layers, *args, **kwargs):
super(KaggleValidationMSEObjective, self).__init__(input_layers, *args, **kwargs)
self.target_vars["systole"] = T.fmatrix("systole_target_kaggle")
self.target_vars["diastole"] = T.fmatrix("diastole_target_kaggle")
def get_kaggle_loss(self, validation=False, average=True, *args, **kwargs):
if not validation: # only evaluate this one in the validation step
return theano.shared([-1])
sigma = T.sqrt(self.get_loss() - self.penalty)
network_systole = utils.theano_mu_sigma_erf(lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)[:,0],
sigma)
network_diastole = utils.theano_mu_sigma_erf(lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)[:,0],
sigma)
systole_target = self.target_vars["systole"]
diastole_target = self.target_vars["diastole"]
if not average:
CRPS = (T.mean((network_systole - systole_target)**2, axis = (1,)) +
T.mean((network_diastole - diastole_target)**2, axis = (1,)) )/2
return CRPS
else:
CRPS = (T.mean((network_systole - systole_target)**2, axis = (0,1)) +
T.mean((network_diastole - diastole_target)**2, axis = (0,1)) )/2
return CRPS
def _theano_pdf_to_cdf(pdfs):
return T.extra_ops.cumsum(pdfs, axis=1)
def _crps(cdfs1, cdfs2):
return T.mean((cdfs1 - cdfs2)**2, axis=(1,))
class LogLossObjective(TargetVarDictObjective):
def __init__(self, input_layers, *args, **kwargs):
super(LogLossObjective, self).__init__(input_layers, *args, **kwargs)
self.input_systole = input_layers["systole:onehot"]
self.input_diastole = input_layers["diastole:onehot"]
self.target_vars["systole:onehot"] = T.fmatrix("systole_target_onehot")
self.target_vars["diastole:onehot"] = T.fmatrix("diastole_target_onehot")
def get_loss(self, average=True, other_losses={}, *args, **kwargs):
network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)
network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)
systole_target = self.target_vars["systole:onehot"]
diastole_target = self.target_vars["diastole:onehot"]
ll_sys = log_loss(network_systole, systole_target)
ll_dia = log_loss(network_diastole, diastole_target)
ll = 0.5 * ll_sys + 0.5 * ll_dia
# CRPS scores
cdf = _theano_pdf_to_cdf
CRPS_systole = _crps(cdf(network_systole), cdf(systole_target))
CRPS_diastole = _crps(cdf(network_diastole), cdf(diastole_target))
if average:
ll = T.mean(ll, axis=(0,))
CRPS_systole = T.mean(CRPS_systole, axis=(0,))
CRPS_diastole = T.mean(CRPS_diastole, axis=(0,))
other_losses['CRPS_systole'] = CRPS_systole
other_losses['CRPS_diastole'] = CRPS_diastole
return ll + self.penalty
class KaggleValidationLogLossObjective(LogLossObjective):
"""
This is the objective as defined by Kaggle: https://www.kaggle.com/c/second-annual-data-science-bowl/details/evaluation
"""
def __init__(self, input_layers, *args, **kwargs):
super(KaggleValidationLogLossObjective, self).__init__(input_layers, *args, **kwargs)
self.target_vars["systole"] = T.fmatrix("systole_target_kaggle")
self.target_vars["diastole"] = T.fmatrix("diastole_target_kaggle")
def get_kaggle_loss(self, validation=False, average=True, *args, **kwargs):
if not validation:
return theano.shared([-1])
network_systole = T.clip(T.extra_ops.cumsum(lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs), axis=1), 0.0, 1.0)
network_diastole = T.clip(T.extra_ops.cumsum(lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs), axis=1), 0.0, 1.0)
systole_target = self.target_vars["systole"]
diastole_target = self.target_vars["diastole"]
if not average:
CRPS = (T.mean((network_systole - systole_target)**2, axis = (1,)) +
T.mean((network_diastole - diastole_target)**2, axis = (1,)) )/2
return CRPS
else:
CRPS = (T.mean((network_systole - systole_target)**2, axis = (0,1)) +
T.mean((network_diastole - diastole_target)**2, axis = (0,1)) )/2
return CRPS
def log_loss(y, t, eps=1e-7):
"""
cross entropy loss, summed over classes, mean over batches
"""
y = T.clip(y, eps, 1 - eps)
loss = -T.mean(t * np.log(y) + (1-t) * np.log(1-y), axis=(1,))
return loss
class WeightedLogLossObjective(TargetVarDictObjective):
def __init__(self, input_layers, *args, **kwargs):
super(WeightedLogLossObjective, self).__init__(input_layers, *args, **kwargs)
self.input_systole = input_layers["systole:onehot"]
self.input_diastole = input_layers["diastole:onehot"]
self.target_vars["systole"] = T.fmatrix("systole_target")
self.target_vars["diastole"] = T.fmatrix("diastole_target")
self.target_vars["systole:onehot"] = T.fmatrix("systole_target_onehot")
self.target_vars["diastole:onehot"] = T.fmatrix("diastole_target_onehot")
self.target_vars["systole:class_weight"] = T.fmatrix("systole_target_weights")
self.target_vars["diastole:class_weight"] = T.fmatrix("diastole_target_weights")
def get_loss(self, *args, **kwargs):
network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)
network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)
systole_target = self.target_vars["systole:onehot"]
diastole_target = self.target_vars["diastole:onehot"]
systole_weights = self.target_vars["systole:class_weight"]
diastole_weights = self.target_vars["diastole:class_weight"]
if "average" in kwargs and not kwargs["average"]:
ll = 0.5 * weighted_log_loss(network_systole, systole_target, weights=systole_weights) + \
0.5 * weighted_log_loss(network_diastole, diastole_target, weights=diastole_weights)
return ll
ll = 0.5 * T.mean(weighted_log_loss(network_systole, systole_target, weights=systole_weights), axis = (0,)) + \
0.5 * T.mean(weighted_log_loss(network_diastole, diastole_target, weights=diastole_weights), axis = (0,))
return ll + self.penalty
def get_kaggle_loss(self, validation=False, average=True, *args, **kwargs):
if not validation:
return theano.shared([-1])
network_systole = T.clip(T.extra_ops.cumsum(lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs), axis=1), 0.0, 1.0).astype('float32')
network_diastole = T.clip(T.extra_ops.cumsum(lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs), axis=1), 0.0, 1.0).astype('float32')
systole_target = self.target_vars["systole"].astype('float32')
diastole_target = self.target_vars["diastole"].astype('float32')
if not average:
CRPS = T.mean((network_systole - systole_target)**2 + (network_diastole - diastole_target)**2, axis = 1)/2
return CRPS
else:
CRPS = (T.mean((network_systole - systole_target)**2, axis = (0,1)) +
T.mean((network_diastole - diastole_target)**2, axis = (0,1)) )/2
theano_printer.print_me_this("CRPS", CRPS)
return CRPS
def weighted_log_loss(y, t, weights, eps=1e-7):
"""
cross entropy loss, summed over classes, mean over batches
"""
y = T.clip(y, eps, 1 - eps)
loss = -T.mean(weights * (t * np.log(y) + (1-t) * np.log(1-y)), axis=(1,))
return loss
class BinaryCrossentropyImageObjective(TargetVarDictObjective):
def __init__(self, input_layers, *args, **kwargs):
super(BinaryCrossentropyImageObjective, self).__init__(input_layers, *args, **kwargs)
self.input_layer = input_layers["segmentation"]
self.target_vars = dict()
self.target_vars["segmentation"] = T.ftensor3("segmentation_target")
def get_loss(self, *args, **kwargs):
network_output = lasagne.layers.helper.get_output(self.input_layer, *args, **kwargs)
segmentation_target = self.target_vars["segmentation"]
if "average" in kwargs and not kwargs["average"]:
loss = log_loss( network_output.flatten(ndim=2), segmentation_target.flatten(ndim=2) )
return loss
return T.mean(log_loss(network_output.flatten(ndim=2), segmentation_target.flatten(ndim=2))) + self.penalty
class MixedKaggleSegmentationObjective(KaggleObjective, BinaryCrossentropyImageObjective):
def __init__(self, input_layers, segmentation_weight=1.0, *args, **kwargs):
super(MixedKaggleSegmentationObjective, self).__init__(input_layers, *args, **kwargs)
self.segmentation_weight = segmentation_weight
def get_loss(self, *args, **kwargs):
return self.get_kaggle_loss(*args, **kwargs) + self.segmentation_weight * self.get_segmentation_loss(*args, **kwargs)
def get_kaggle_loss(self, *args, **kwargs):
return KaggleObjective.get_loss(self, *args, **kwargs)
def get_segmentation_loss(self, *args, **kwargs):
return BinaryCrossentropyImageObjective.get_loss(self, *args, **kwargs)
class UpscaledImageObjective(BinaryCrossentropyImageObjective):
def get_loss(self, *args, **kwargs):
network_output = lasagne.layers.helper.get_output(self.input_layer, *args, **kwargs)
segmentation_target = self.target_vars["segmentation"]
return log_loss(network_output.flatten(ndim=2), segmentation_target[:,4::8,4::8].flatten(ndim=2)) + self.penalty
class R2Objective(TargetVarDictObjective):
def __init__(self, input_layers, *args, **kwargs):
super(R2Objective, self).__init__(input_layers, *args, **kwargs)
self.input_systole = input_layers["systole"]
self.input_diastole = input_layers["diastole"]
self.target_vars["systole"] = T.fvector("systole_target")
self.target_vars["diastole"] = T.fvector("diastole_target")
def get_loss(self, *args, **kwargs):
network_systole = lasagne.layers.helper.get_output(self.input_systole, *args, **kwargs)
network_diastole = lasagne.layers.helper.get_output(self.input_diastole, *args, **kwargs)
systole_target = self.target_vars["systole"]
diastole_target = self.target_vars["diastole"]
return T.sum((network_diastole-diastole_target)**2) + T.sum((network_systole-systole_target)**2) + self.penalty