-
Notifications
You must be signed in to change notification settings - Fork 55
/
train.py
executable file
·378 lines (297 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""Script for training a network as defined in a given configuraton.
Usage:
> python train.py -c CONFIG_NAME
"""
from __future__ import division
import argparse
import collections
import cPickle as pickle
import logging
import string
import time
import os
import sys
from datetime import datetime, timedelta
from functools import partial
from itertools import izip
import lasagne
import numpy as np
import theano
import theano.tensor as T
from theano.compile.nanguardmode import NanGuardMode
import buffering
import data_loader
import theano_printer
import utils
from configuration import config, set_configuration
from data_loader import get_lenght_of_set, get_number_of_validation_samples, validation_patients_indices, NUM_TRAIN_PATIENTS
from paths import MODEL_PATH, LOGS_PATH
from predict import predict_model
from log import print_to_file
def train_model(expid):
metadata_path = MODEL_PATH + "%s.pkl" % expid
if theano.config.optimizer != "fast_run":
print "WARNING: not running in fast mode!"
data_loader.filter_patient_folders()
print "Build model"
interface_layers = config().build_model()
output_layers = interface_layers["outputs"]
input_layers = interface_layers["inputs"]
top_layer = lasagne.layers.MergeLayer(
incomings=output_layers.values()
)
all_layers = lasagne.layers.get_all_layers(top_layer)
all_params = lasagne.layers.get_all_params(top_layer, trainable=True)
if "cutoff_gradients" in interface_layers:
submodel_params = [param for value in interface_layers["cutoff_gradients"] for param in lasagne.layers.get_all_params(value)]
all_params = [p for p in all_params if p not in submodel_params]
if "pretrained" in interface_layers:
for config_name, layers_dict in interface_layers["pretrained"].iteritems():
pretrained_metadata_path = MODEL_PATH + "%s.pkl" % config_name.split('.')[1]
pretrained_resume_metadata = np.load(pretrained_metadata_path)
pretrained_top_layer = lasagne.layers.MergeLayer(
incomings = layers_dict.values()
)
lasagne.layers.set_all_param_values(pretrained_top_layer, pretrained_resume_metadata['param_values'])
num_params = sum([np.prod(p.get_value().shape) for p in all_params])
print string.ljust(" layer output shapes:",36),
print string.ljust("#params:",10),
print string.ljust("#data:",10),
print "output shape:"
for layer in all_layers[:-1]:
name = string.ljust(layer.__class__.__name__, 32)
num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
num_param = string.ljust(int(num_param).__str__(), 10)
num_size = string.ljust(np.prod(layer.output_shape[1:]).__str__(), 10)
print " %s %s %s %s" % (name, num_param, num_size, layer.output_shape)
print " number of parameters: %d" % num_params
obj = config().build_objective(interface_layers)
train_loss_theano = obj.get_loss()
kaggle_loss_theano = obj.get_kaggle_loss()
segmentation_loss_theano = obj.get_segmentation_loss()
validation_other_losses = collections.OrderedDict()
validation_train_loss = obj.get_loss(average=False, deterministic=True, validation=True, other_losses=validation_other_losses)
validation_kaggle_loss = obj.get_kaggle_loss(average=False, deterministic=True, validation=True)
validation_segmentation_loss = obj.get_segmentation_loss(average=False, deterministic=True, validation=True)
xs_shared = {
key: lasagne.utils.shared_empty(dim=len(l_in.output_shape), dtype='float32') for (key, l_in) in input_layers.iteritems()
}
# contains target_vars of the objective! Not the output layers desired values!
# There can be more output layers than are strictly required for the objective
# e.g. for debugging
ys_shared = {
key: lasagne.utils.shared_empty(dim=target_var.ndim, dtype='float32') for (key, target_var) in obj.target_vars.iteritems()
}
learning_rate_schedule = config().learning_rate_schedule
learning_rate = theano.shared(np.float32(learning_rate_schedule[0]))
idx = T.lscalar('idx')
givens = dict()
for key in obj.target_vars.keys():
if key=="segmentation":
givens[obj.target_vars[key]] = ys_shared[key][idx*config().sunny_batch_size : (idx+1)*config().sunny_batch_size]
else:
givens[obj.target_vars[key]] = ys_shared[key][idx*config().batch_size : (idx+1)*config().batch_size]
for key in input_layers.keys():
if key=="sunny":
givens[input_layers[key].input_var] = xs_shared[key][idx*config().sunny_batch_size:(idx+1)*config().sunny_batch_size]
else:
givens[input_layers[key].input_var] = xs_shared[key][idx*config().batch_size:(idx+1)*config().batch_size]
updates = config().build_updates(train_loss_theano, all_params, learning_rate)
#grad_norm = T.sqrt(T.sum([(g**2).sum() for g in theano.grad(train_loss_theano, all_params)]))
#theano_printer.print_me_this("Grad norm", grad_norm)
iter_train = theano.function([idx], [train_loss_theano, kaggle_loss_theano, segmentation_loss_theano] + theano_printer.get_the_stuff_to_print(),
givens=givens, on_unused_input="ignore", updates=updates,
# mode=NanGuardMode(nan_is_error=True, inf_is_error=True, big_is_error=True)
)
iter_validate = theano.function([idx], [validation_train_loss, validation_kaggle_loss, validation_segmentation_loss] + [v for _, v in validation_other_losses.items()] + theano_printer.get_the_stuff_to_print(),
givens=givens, on_unused_input="ignore")
num_chunks_train = int(config().num_epochs_train * NUM_TRAIN_PATIENTS / (config().batch_size * config().batches_per_chunk))
print "Will train for %d chunks" % num_chunks_train
if config().restart_from_save and os.path.isfile(metadata_path):
print "Load model parameters for resuming"
resume_metadata = np.load(metadata_path)
lasagne.layers.set_all_param_values(top_layer, resume_metadata['param_values'])
start_chunk_idx = resume_metadata['chunks_since_start'] + 1
chunks_train_idcs = range(start_chunk_idx, num_chunks_train)
# set lr to the correct value
current_lr = np.float32(utils.current_learning_rate(learning_rate_schedule, start_chunk_idx))
print " setting learning rate to %.7f" % current_lr
learning_rate.set_value(current_lr)
losses_train = resume_metadata['losses_train']
losses_eval_valid = resume_metadata['losses_eval_valid']
losses_eval_train = resume_metadata['losses_eval_train']
losses_eval_valid_kaggle = [] #resume_metadata['losses_eval_valid_kaggle']
losses_eval_train_kaggle = [] #resume_metadata['losses_eval_train_kaggle']
else:
chunks_train_idcs = range(num_chunks_train)
losses_train = []
losses_eval_valid = []
losses_eval_train = []
losses_eval_valid_kaggle = []
losses_eval_train_kaggle = []
create_train_gen = partial(config().create_train_gen,
required_input_keys = xs_shared.keys(),
required_output_keys = ys_shared.keys()# + ["patients"],
)
create_eval_valid_gen = partial(config().create_eval_valid_gen,
required_input_keys = xs_shared.keys(),
required_output_keys = ys_shared.keys()# + ["patients"]
)
create_eval_train_gen = partial(config().create_eval_train_gen,
required_input_keys = xs_shared.keys(),
required_output_keys = ys_shared.keys()
)
print "Train model"
start_time = time.time()
prev_time = start_time
num_batches_chunk = config().batches_per_chunk
for e, train_data in izip(chunks_train_idcs, buffering.buffered_gen_threaded(create_train_gen())):
print "Chunk %d/%d" % (e + 1, num_chunks_train)
epoch = (1.0 * config().batch_size * config().batches_per_chunk * (e+1) / NUM_TRAIN_PATIENTS)
print " Epoch %.1f" % epoch
for key, rate in learning_rate_schedule.iteritems():
if epoch >= key:
lr = np.float32(rate)
learning_rate.set_value(lr)
print " learning rate %.7f" % lr
if config().dump_network_loaded_data:
pickle.dump(train_data, open("data_loader_dump_train_%d.pkl"%e, "wb"))
for key in xs_shared:
xs_shared[key].set_value(train_data["input"][key])
for key in ys_shared:
ys_shared[key].set_value(train_data["output"][key])
#print "train:", sorted(train_data["output"]["patients"])
losses = []
kaggle_losses = []
segmentation_losses = []
for b in xrange(num_batches_chunk):
iter_result = iter_train(b)
loss, kaggle_loss, segmentation_loss = tuple(iter_result[:3])
utils.detect_nans(loss, xs_shared, ys_shared, all_params)
losses.append(loss)
kaggle_losses.append(kaggle_loss)
segmentation_losses.append(segmentation_loss)
mean_train_loss = np.mean(losses)
print " mean training loss:\t\t%.6f" % mean_train_loss
losses_train.append(mean_train_loss)
print " mean kaggle loss:\t\t%.6f" % np.mean(kaggle_losses)
print " mean segment loss:\t\t%.6f" % np.mean(segmentation_losses)
if ((e + 1) % config().validate_every) == 0:
print
print "Validating"
if config().validate_train_set:
subsets = ["validation", "train"]
gens = [create_eval_valid_gen, create_eval_train_gen]
losses_eval = [losses_eval_valid, losses_eval_train]
losses_kaggle = [losses_eval_valid_kaggle, losses_eval_train_kaggle]
else:
subsets = ["validation"]
gens = [create_eval_valid_gen]
losses_eval = [losses_eval_valid]
losses_kaggle = [losses_eval_valid_kaggle]
for subset, create_gen, losses_validation, losses_kgl in zip(subsets, gens, losses_eval, losses_kaggle):
vld_losses = []
vld_kaggle_losses = []
vld_segmentation_losses = []
vld_other_losses = {k:[] for k,_ in validation_other_losses.items()}
print " %s set (%d samples)" % (subset, get_number_of_validation_samples(set=subset))
for validation_data in buffering.buffered_gen_threaded(create_gen()):
num_batches_chunk_eval = config().batches_per_chunk
if config().dump_network_loaded_data:
pickle.dump(validation_data, open("data_loader_dump_valid_%d.pkl"%e, "wb"))
for key in xs_shared:
xs_shared[key].set_value(validation_data["input"][key])
for key in ys_shared:
ys_shared[key].set_value(validation_data["output"][key])
#print "validate:", validation_data["output"]["patients"]
for b in xrange(num_batches_chunk_eval):
losses = tuple(iter_validate(b)[:3+len(validation_other_losses)])
loss, kaggle_loss, segmentation_loss = losses[:3]
other_losses = losses[3:]
vld_losses.extend(loss)
vld_kaggle_losses.extend(kaggle_loss)
vld_segmentation_losses.extend(segmentation_loss)
for k, other_loss in zip(validation_other_losses, other_losses):
vld_other_losses[k].extend(other_loss)
vld_losses = np.array(vld_losses)
vld_kaggle_losses = np.array(vld_kaggle_losses)
vld_segmentation_losses = np.array(vld_segmentation_losses)
for k in validation_other_losses:
vld_other_losses[k] = np.array(vld_other_losses[k])
# now select only the relevant section to average
sunny_len = get_lenght_of_set(name="sunny", set=subset)
regular_len = get_lenght_of_set(name="regular", set=subset)
num_valid_samples = get_number_of_validation_samples(set=subset)
#print losses[:num_valid_samples]
#print kaggle_losses[:regular_len]
#print segmentation_losses[:sunny_len]
loss_to_save = obj.compute_average(vld_losses[:num_valid_samples])
print " mean training loss:\t\t%.6f" % loss_to_save
print " mean kaggle loss:\t\t%.6f" % np.mean(vld_kaggle_losses[:regular_len])
print " mean segment loss:\t\t%.6f" % np.mean(vld_segmentation_losses[:sunny_len])
# print " acc:\t%.2f%%" % (acc * 100)
for k, v in vld_other_losses.items():
print " mean %s loss:\t\t%.6f" % (k, obj.compute_average(v[:num_valid_samples], loss_name=k))
print
losses_validation.append(loss_to_save)
kaggle_to_save = np.mean(vld_kaggle_losses[:regular_len])
losses_kgl.append(kaggle_to_save)
now = time.time()
time_since_start = now - start_time
time_since_prev = now - prev_time
prev_time = now
est_time_left = time_since_start * (float(num_chunks_train - (e + 1)) / float(e + 1 - chunks_train_idcs[0]))
eta = datetime.now() + timedelta(seconds=est_time_left)
eta_str = eta.strftime("%c")
print " %s since start (%.2f s)" % (utils.hms(time_since_start), time_since_prev)
print " estimated %s to go (ETA: %s)" % (utils.hms(est_time_left), eta_str)
print
if ((e + 1) % config().save_every) == 0:
print
print "Saving metadata, parameters"
with open(metadata_path, 'w') as f:
pickle.dump({
'metadata_path': metadata_path,
'configuration_file': config().__name__,
'git_revision_hash': utils.get_git_revision_hash(),
'experiment_id': expid,
'chunks_since_start': e,
'losses_train': losses_train,
'losses_eval_train': losses_eval_train,
'losses_eval_train_kaggle': losses_eval_train_kaggle,
'losses_eval_valid': losses_eval_valid,
'losses_eval_valid_kaggle': losses_eval_valid_kaggle,
'time_since_start': time_since_start,
'param_values': lasagne.layers.get_all_param_values(top_layer)
}, f, pickle.HIGHEST_PROTOCOL)
print " saved to %s" % metadata_path
print
# store all known outputs from last batch:
if config().take_a_dump:
all_theano_variables = [train_loss_theano, kaggle_loss_theano, segmentation_loss_theano] + theano_printer.get_the_stuff_to_print()
for layer in all_layers[:-1]:
all_theano_variables.append(lasagne.layers.helper.get_output(layer))
iter_train = theano.function([idx], all_theano_variables,
givens=givens, on_unused_input="ignore", updates=updates,
# mode=NanGuardMode(nan_is_error=True, inf_is_error=True, big_is_error=True)
)
train_data["intermediates"] = iter_train(0)
pickle.dump(train_data, open(metadata_path + "-dump", "wb"))
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
required = parser.add_argument_group('required arguments')
required.add_argument('-c', '--config',
help='configuration to run',
required=True)
args = parser.parse_args()
set_configuration(args.config)
expid = utils.generate_expid(args.config)
log_file = LOGS_PATH + "%s.log" % expid
with print_to_file(log_file):
print "Running configuration:", config().__name__
print "Current git version:", utils.get_git_revision_hash()
train_model(expid)
print "log saved to '%s'" % log_file
predict_model(expid)
print "log saved to '%s'" % log_file