-
Notifications
You must be signed in to change notification settings - Fork 1
/
plot.py
200 lines (165 loc) · 5.62 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import matplotlib.ticker
import json
def heatmap(data, row_labels, col_labels, ax=None, cbar_kw={}, cbarlabel="", **kwargs):
"""
Create a heatmap from a numpy array and two lists of labels.
Parameters
----------
data
A 2D numpy array of shape (M, N).
row_labels
A list or array of length M with the labels for the rows.
col_labels
A list or array of length N with the labels for the columns.
ax
A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If
not provided, use current axes or create a new one. Optional.
cbar_kw
A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional.
cbarlabel
The label for the colorbar. Optional.
**kwargs
All other arguments are forwarded to `imshow`.
"""
if not ax:
ax = plt.gca()
# Plot the heatmap
# im = ax.imshow(data, **kwargs)
im = ax.imshow(data, vmin=-100, vmax=100, **kwargs)
# plt.colorbar(im, fraction=0.046, pad=0.04, ticks=[-100, -50, 0, 50, 100])
# cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
cbar = ax.figure.colorbar(
im, ax=ax, ticks=[-100, -50, 0, 50, 100], **cbar_kw, fraction=0.025, pad=0.02
)
cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom")
# Show all ticks and label them with the respective list entries.
ax.set_xticks(np.arange(data.shape[1]), labels=col_labels)
ax.set_yticks(np.arange(data.shape[0]), labels=row_labels)
# Let the horizontal axes labeling appear on top.
# ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False)
ax.tick_params(top=False, bottom=True, labeltop=False, labelbottom=True)
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
# Turn spines off and create white grid.
ax.spines[:].set_visible(False)
ax.set_xticks(np.arange(data.shape[1] + 1) - 0.5, minor=True)
ax.set_yticks(np.arange(data.shape[0] + 1) - 0.5, minor=True)
# ax.grid(which="minor", color="w", linestyle="-", linewidth=3)
ax.tick_params(which="minor", bottom=False, left=False)
return im, cbar
def annotate_heatmap(
im,
data=None,
valfmt="{x:.2f}",
textcolors=("black", "white"),
threshold=None,
**textkw,
):
"""
A function to annotate a heatmap.
Parameters
----------
im
The AxesImage to be labeled.
data
Data used to annotate. If None, the image's data is used. Optional.
valfmt
The format of the annotations inside the heatmap. This should either
use the string format method, e.g. "$ {x:.2f}", or be a
`matplotlib.ticker.Formatter`. Optional.
textcolors
A pair of colors. The first is used for values below a threshold,
the second for those above. Optional.
threshold
Value in data units according to which the colors from textcolors are
applied. If None (the default) uses the middle of the colormap as
separation. Optional.
**kwargs
All other arguments are forwarded to each call to `text` used to create
the text labels.
"""
if not isinstance(data, (list, np.ndarray)):
data = im.get_array()
# Normalize the threshold to the images color range.
if threshold is not None:
threshold = im.norm(threshold)
else:
threshold = im.norm(data.max()) / 2.0
# Set default alignment to center,
# but allow it to be overwritten by textkw.
kw = dict(horizontalalignment="center", verticalalignment="center")
kw.update(textkw)
# Get the formatter in case a string is supplied
if isinstance(valfmt, str):
valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)
# Loop over the data and create a `Text` for each "pixel".
# Change the text's color depending on the data.
texts = []
for i in range(data.shape[0]):
for j in range(data.shape[1]):
kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)])
text = im.axes.text(j, i, valfmt(data[i, j], None), **kw)
texts.append(text)
return texts
import numpy as np
import matplotlib.pyplot as plt
def read_har(id, plot=False):
file_paths = [
"./packet_reordering/output_10Mbps.json",
"./packet_reordering/output_50Mbps.json",
"./packet_reordering/output_100Mbps.json",
]
file_path = file_paths[id]
v1 = []
v2 = []
vals = []
data_ = {}
with open(file_path, "r") as file:
data_ = json.load(file)
for key, value in data_.items():
vals.append(value)
print(vals[0:7])
v1 = vals[0:7]
v2 = vals[7:]
if not plot:
data[id] = v1
else:
data[id] = v2
set_count = True # set true if count, false if only 1 image
if set_count:
data = np.zeros((3, 6))
else:
data = np.zeros((3, 7))
read_har(0, set_count)
read_har(1, set_count)
read_har(2, set_count)
# np.random.seed(2)
# data = np.random.random((3, 7)) * 200 - 100
# print(data)
if set_count:
ylabs = ["1MBx1", "500KBx2", "200KBx5", "100KBx10", "10KBx100", "5KBx200"]
else:
ylabs = ["5KB", "10KB", "100KB", "200KB", "500KB", "1MB", "10MB"]
xlabs = ["10Mbps", "50Mbps", "100Mbps"]
fig, ax = plt.subplots()
heatmap(data, row_labels=xlabs, col_labels=ylabs, ax=ax, cmap="BrBG", cbarlabel="")
if set_count:
plt.savefig(f"img_count_reorder.png")
else:
plt.savefig(f"img_normal_reorder.png")
# plt.show()
keys = [
"5KB",
"10KB",
"100KB",
"200KB",
"500KB",
"1MB",
"10MB",
"1MBx1",
"500KBx2",
"200KBx5",
"100KBx10",
"10KBx100",
"5KBx200",
]