-
Notifications
You must be signed in to change notification settings - Fork 4
/
upload.py
514 lines (401 loc) · 19 KB
/
upload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import os
import time
import shutil
import common
import streamlit as st
import pandas as pd
__author__ = 'Aleksandar Anžel'
__copyright__ = ''
__credits__ = ['Aleksandar Anžel', 'Georges Hattab']
__license__ = 'GNU General Public License v3.0'
__version__ = '1.0'
__maintainer__ = 'Aleksandar Anžel'
__email__ = '[email protected]'
__status__ = 'Dev'
type_list_csv = ['csv', 'tsv']
type_list_zip = []
for i in shutil.get_unpack_formats():
type_list_zip += i[1]
path_uploaded = os.path.join('..', 'Data', 'uploaded')
path_uploaded_genomics = os.path.join(path_uploaded, 'genomics')
path_uploaded_proteomics = os.path.join(path_uploaded, 'proteomics')
path_uploaded_transcriptomics = os.path.join(path_uploaded, 'transcriptomics')
path_uploaded_metabolomics = os.path.join(path_uploaded, 'metabolomics')
path_uploaded_phy_che = os.path.join(path_uploaded, 'phy_che')
path_uploaded_viz = os.path.join(path_uploaded, 'visualizations')
path_uploaded_dict = {
'Genomics': path_uploaded_genomics,
'Proteomics': path_uploaded_proteomics,
'Transcriptomics': path_uploaded_transcriptomics,
'Metabolomics': path_uploaded_metabolomics,
'Physico-chemical': path_uploaded_phy_che
}
def remove_cached_data():
SAVE_TIME = 3600 # Time is given in seconds, 5400s = 1.5h, 3600 = 1h
time_limit = time.time() - SAVE_TIME
# Traversing every cache directory and deleting everything from it
for omic in path_uploaded_dict:
path_omic = path_uploaded_dict[omic]
for file_name in os.listdir(path_omic):
if 'gitkeep' in file_name:
continue
else:
file_path = os.path.join(path_omic, file_name)
# Check if file is older than 1h, and if yes, delete it
if os.stat(file_path).st_mtime < time_limit:
try:
if os.path.isfile(file_path) or\
os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except OSError as e:
print('Failed to delete ' + file_path + '. Reason: '
+ e)
print('Successfully removed everything from ' + omic +
' data set')
else:
pass
return None
def upload_csv(key_suffix):
upload_csv_label_text = '''Upload your data set here. The maximum size is
50MB for the web version of MOVIS, 1TB for the
docker version of MOVIS.'''
upload_csv_text_general = '''Tabular data sets must have one or two temporal
columns named as one of the following: DateTime,
Date, Time, Hour, Minute. If there are two columns,
it is expected they have different names, and MOVIS
will merge them into one column named DateTime.
More information is available on our Wiki page
https://github.com/AAnzel/MOVIS/wiki/1.-Start-with-MOVIS#tabular-data-sets'''
# noqa e501
upload_csv_text_specific = {
'Genomics': '',
'Proteomics': '',
'Metabolomics': '',
'Physico-chemical': '',
'Transcriptomics': '''**Data sets must have exactly the same names of
features (columns).**'''}
with st.expander('Show data format information', expanded=True):
st.info(upload_csv_text_general + upload_csv_text_specific[key_suffix])
imported_files = []
if key_suffix == 'Transcriptomics':
# This one returns a list because of the accept_multiple_files=True
imported_files = st.file_uploader(
upload_csv_label_text, type=type_list_csv,
accept_multiple_files=True, key='Upload_file_multi' + key_suffix)
else:
# This one returns a file, so it has to be appended
imported_files.append(st.file_uploader(
upload_csv_label_text, type=type_list_csv,
accept_multiple_files=False,
key='Upload_file_single' + key_suffix))
delimiter_dict = {
'Comma (,)': ',', 'Semicolon (;)': ';', 'Tab (\\t)': '\t'}
# TODO: Check what happens with semicolon
default_delimiter_dict = {'csv': 0, 'tsv': 2}
number_of_files = len(imported_files)
if imported_files == [] or imported_files[0] is None:
return None
# Checking file extension for the first file only
imported_file_extension = os.path.splitext(
imported_files[0].name)[1][1:].strip().lower()
delimiter = st.selectbox(
'Select the delimiter for your data set',
list(delimiter_dict.keys()),
index=default_delimiter_dict[imported_file_extension],
key='Upload_delim_1_' + key_suffix)
if number_of_files <= 1:
warning_text = 'Please choose the right delimiter'
success_text = 'Data set succesfully uploaded'
else:
warning_text = 'Data sets do not have the same delimiter'
success_text = 'Data sets succesfully uploaded'
df_list = []
if key_suffix == 'Transcriptomics':
selected_df_names = []
for i in range(number_of_files):
try:
# TODO: Implement data imputation, maybe
df = pd.read_csv(
imported_files[i],
delimiter=delimiter_dict[delimiter],
low_memory=False)
df.dropna(inplace=True)
df.reset_index(inplace=True, drop=True)
df = common.fix_dataframe_columns(df)
except ValueError:
st.warning(warning_text)
df = df.convert_dtypes()
df_list.append(df)
if key_suffix == 'Transcriptomics':
selected_df_names.append(os.path.splitext(
imported_files[i].name)[0].strip())
st.success(success_text)
if key_suffix == 'Transcriptomics':
df_list[0] = common.work_with_multi_transcriptomics(
df_list, selected_df_names)
return df_list[0]
def upload_multiple(key_suffix):
upload_text_zip_fasta = {
'Genomics': '''Upload your archive here. Archive should
contain only FASTA (.fa) files. Possible file names are
given as help, above. The maximum size is 50MB
for the web version of MOVIS, 1TB for the docker
version of MOVIS.''',
'Proteomics': '''Upload your archive here. Archive should
contain only FASTA (.faa) files. Possible file names
are given as help, above. The maximum size is
50MB for the web version of MOVIS, 1TB for the docker
version of MOVIS.'''}
upload_help_zip_fasta = {
'Genomics': '''File names can be given in two formats:
1. D03.fa for FASTA file collected on the third day, or
W03.fa for FASTA file collected on the third week.
You will be given an option to select the start date.
2. 2019-03-15.fa for FASTA file collected on 15.03.2019.
You should use either the first or the second option,
mixing name options is not allowed.''',
'Proteomics': '''File names can be given in two formats:
1. D03.fa[a] for FASTA file collected on the third
day, or W03.fa[a] for FASTA file collected the on
third week. You will be given an option to select the
start date.
2. 2019-03-15.fa[a] for FASTA file collected on
15.03.2019. You should use either the first or the
second option, mixing name options is not allowed.'''}
upload_text_zip_kegg = {
'Genomics': '''Upload your archive here. Archive should
contain only KO besthits (.besthits) files. Possible
file names are given as help, above.
The maximum size is 50MB for the web version of MOVIS,
1TB for the docker version of MOVIS.'''}
upload_help_zip_kegg = {
'Genomics': '''File names can be given in two formats:
1. D03.KOs.besthits for FASTA file collected on the
third day, or W03.KOs.besthits for FASTA file collected
on the third week. You will be given an option to select
the start date.
2. 2019-03-15.KOs.besthits for FASTA file collected on
15.03.2019. You should use either the first or the
second option, mixing name options is not allowed.
Delimiter in this file should be tab ("\\t").'''}
upload_text_zip_bins = {
'Genomics': '''Upload your archive here. Archive should
contain only annotation (.gff) files. Possible file
names are given as help, above. The maximum size
is 50MB for the web version of MOVIS, 1TB for the docker
version of MOVIS.'''}
upload_help_zip_bins = {
'Genomics': '''File names can be given in two formats:
1. D03.gff for samples collected on the
third day, or W03.gff for samples collected
on the third week. You will be given an option to select
the start date.
2. 2019-03-15.gff for samples collected on 15.03.2019.
You should use either the first or the second option,
mixing name options is not allowed.'''}
upload_text_zip_depth = {
'Genomics': '''Upload your archive here. Archive should
contain files with any extension. Possible file names
are given as help, above. The maximum size is 50MB for
the web version of MOVIS, 1TB for the docker version of
MOVIS.''',
'Transcriptomics': '''Upload your archive here. Archive should
contain files with any extension. Possible file names
are given as help, above. The maximum size is
50MB for the web version of MOVIS, 1TB for the docker
version of MOVIS.'''}
upload_help_zip_depth = {
'Genomics': '''File names can be given in two formats:
1. D03.any_extension for depth-of-coverage file
collected on the third day, or W03.any_extension for
depth-of-coverage file collected on the third week.
You will be given an option to select the start date.
2. 2019-03-15.any_extension for depth-of-coverage file
collected on 15.03.2019. You should use either the first
or the second option, mixing name options is not
allowed.''',
'Transcriptomics': '''File names can be given in two formats:
1. D03.any_extension for depth-of-coverage file
collected on the third day, or W03.any_extension for
depth-of-coverage file collected on the third week.
You will be given an option to select the start date.
2. 2019-03-15.any_extension for depth-of-coverage file
collected on 15.03.2019. You should use either the first
or the second option, mixing name options is not
allowed.'''}
upload_help_general = '''More information is available on our Wiki page
https://github.com/AAnzel/MOVIS/wiki/1.-Start-with-MOVIS#archived-data-sets'''
# noqa e501
available_data_set_types = {
'Genomics': {
'Raw FASTA files': 'FASTA',
'KEGG annotation files': 'KEGG',
'BINS annotation files': 'BINS',
'Depth-of-coverage': 'DEPTH',
'Processed data set': 'CALC'},
'Proteomics': {
'Raw FASTA files': 'FASTA',
'Processed data set': 'CALC'},
'Metabolomics': {
'Processed data set': 'CALC'},
'Transcriptomics': {
'Depth-of-coverage': 'DEPTH',
'Processed data set': 'CALC'},
'Physico-chemical': {
'Processed data set': 'CALC'}
}
selected_data_set_type = st.selectbox(
'What kind of omic data do you want to upload?',
list(available_data_set_types[key_suffix].keys()),
key='Upload_' + key_suffix)
if selected_data_set_type == 'Raw FASTA files':
label_text = upload_text_zip_fasta[key_suffix]
help_text = upload_help_zip_fasta[key_suffix]
elif selected_data_set_type == 'KEGG annotation files':
label_text = upload_text_zip_kegg[key_suffix]
help_text = upload_help_zip_kegg[key_suffix]
elif selected_data_set_type == 'BINS annotation files':
label_text = upload_text_zip_bins[key_suffix]
help_text = upload_help_zip_bins[key_suffix]
elif selected_data_set_type == 'Depth-of-coverage':
label_text = upload_text_zip_depth[key_suffix]
help_text = upload_help_zip_depth[key_suffix]
elif selected_data_set_type == 'Processed data set':
return (upload_csv(key_suffix),
available_data_set_types[key_suffix]
[selected_data_set_type])
else:
pass
with st.expander('Show data format information', expanded=True):
st.info(upload_help_general + '\n' + help_text)
imported_file = st.file_uploader(
label_text, type=type_list_zip, accept_multiple_files=False,
key='Upload_file_' + key_suffix)
if imported_file is not None:
return (common.import_archive(imported_file,
path_uploaded_dict[key_suffix]),
available_data_set_types[key_suffix][selected_data_set_type])
else:
return None, None
def upload_intro(folder_path, key_suffix):
st.header(key_suffix + ' data')
st.markdown('')
return_path_or_df = None
return_path_or_df, data_set_type = upload_multiple(key_suffix)
if return_path_or_df is None:
st.warning('Upload your data set')
return return_path_or_df, data_set_type
def upload_genomics():
key_suffix = 'Genomics'
cache_folder_path = path_uploaded_genomics
folder_path_or_df, data_set_type = upload_intro(
cache_folder_path, key_suffix)
if data_set_type == 'CALC':
return common.work_with_csv(
folder_path_or_df, cache_folder_path, key_suffix)
else:
return common.work_with_zip(
folder_path_or_df, data_set_type, cache_folder_path, key_suffix)
def upload_proteomics():
key_suffix = 'Proteomics'
cache_folder_path = path_uploaded_proteomics
folder_path_or_df, data_set_type = upload_intro(
cache_folder_path, key_suffix)
if data_set_type == 'CALC':
return common.work_with_csv(
folder_path_or_df, cache_folder_path, key_suffix)
else:
return common.work_with_zip(
folder_path_or_df, data_set_type, cache_folder_path, key_suffix)
def upload_transcriptomics():
key_suffix = 'Transcriptomics'
cache_folder_path = path_uploaded_transcriptomics
folder_path_or_df, data_set_type = upload_intro(
cache_folder_path, key_suffix)
if data_set_type == 'CALC':
return common.work_with_csv(
folder_path_or_df, cache_folder_path, key_suffix)
else:
return common.work_with_zip(
folder_path_or_df, data_set_type, cache_folder_path, key_suffix)
def upload_metabolomics():
key_suffix = 'Metabolomics'
cache_folder_path = path_uploaded_metabolomics
folder_path_or_df, data_set_type = upload_intro(
cache_folder_path, key_suffix)
if data_set_type == 'CALC':
return common.work_with_csv(
folder_path_or_df, cache_folder_path, key_suffix)
else:
return common.work_with_zip(
folder_path_or_df, data_set_type, cache_folder_path, key_suffix)
def upload_phy_che():
key_suffix = 'Physico-chemical'
cache_folder_path = path_uploaded_phy_che
folder_path_or_df, data_set_type = upload_intro(
cache_folder_path, key_suffix)
if data_set_type == 'CALC':
return common.work_with_csv(
folder_path_or_df, cache_folder_path, key_suffix)
else:
return common.work_with_zip(
folder_path_or_df, data_set_type, cache_folder_path, key_suffix)
def create_main_upload():
st.header('Dataset')
omics_list = ['Genomics', 'Metabolomics', 'Proteomics',
'Physico-chemical', 'Transcriptomics']
choose_omics = st.multiselect('Which omic data do you want to upload:',
omics_list)
st.warning('Your data will be saved for 1 hour on our servers')
num_of_columns = len(choose_omics)
charts = [] # An empty list to hold all pairs (visualizations, key)
# Removing previously cached data
remove_cached_data()
if num_of_columns >= 2:
column_list = st.columns(num_of_columns)
curr_pos = 0
for i in choose_omics:
if i == 'Genomics':
with column_list[curr_pos]:
curr_pos += 1
charts += upload_genomics()
elif i == 'Metabolomics':
with column_list[curr_pos]:
curr_pos += 1
charts += upload_metabolomics()
elif i == 'Proteomics':
with column_list[curr_pos]:
curr_pos += 1
charts += upload_proteomics()
elif i == 'Transcriptomics':
with column_list[curr_pos]:
curr_pos += 1
charts += upload_transcriptomics()
else:
with column_list[curr_pos]:
curr_pos += 1
charts += upload_phy_che()
else:
for i in choose_omics:
if i == 'Genomics':
charts += upload_genomics()
elif i == 'Metabolomics':
charts += upload_metabolomics()
elif i == 'Proteomics':
charts += upload_proteomics()
elif i == 'Transcriptomics':
charts += upload_transcriptomics()
else:
charts += upload_phy_che()
st.markdown('---')
for i in charts:
type_of_chart = type(i[0])
with st.spinner('Visualizing...'):
if 'altair' in str(type_of_chart):
st.altair_chart(i[0], use_container_width=True)
common.save_chart(i[0], path_uploaded_viz, i[1])
else:
pass
return None