From 651e15c7f1b4b95cebe291e05031f849d9734fed Mon Sep 17 00:00:00 2001 From: Michael Date: Tue, 30 Jan 2024 07:32:43 -0500 Subject: [PATCH] final update --- models/Example_OLS_Model.ipynb | 221 --------------------------------- 1 file changed, 221 deletions(-) diff --git a/models/Example_OLS_Model.ipynb b/models/Example_OLS_Model.ipynb index 92c8a12..598ca1c 100644 --- a/models/Example_OLS_Model.ipynb +++ b/models/Example_OLS_Model.ipynb @@ -593,15 +593,6 @@ "snapshot_download(repo_id=\"taqdatabase/OLS\")" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# To do\n", - "1. add parameter estimate\n", - "2. chart with intervals/estimate and p-values" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1205,218 +1196,6 @@ "ax.plot(data['Time'],data['Participant_Timestamp'],marker='*')" ] }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 50 entries, 0 to 49\n", - "Data columns (total 18 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 Unnamed: 0 50 non-null int64 \n", - " 1 Time 50 non-null float64\n", - " 2 Date 50 non-null float64\n", - " 3 Exchange 50 non-null float64\n", - " 4 Symbol 50 non-null float64\n", - " 5 Trade_Volume 50 non-null int64 \n", - " 6 Trade_Price 50 non-null float64\n", - " 7 Sale_Condition 50 non-null float64\n", - " 8 Source_of_Trade 50 non-null float64\n", - " 9 Trade_Stop_Stock_Indicator 50 non-null float64\n", - " 10 Trade_Correction_Indicator 50 non-null int64 \n", - " 11 Sequence_Number 50 non-null int64 \n", - " 12 Trade_Id 50 non-null int64 \n", - " 13 Trade_Reporting_Facility 50 non-null float64\n", - " 14 Participant_Timestamp 50 non-null int64 \n", - " 15 Trade_Reporting_Facility_TRF_Timestamp 50 non-null float64\n", - " 16 Trade_Through_Exempt_Indicator 50 non-null int64 \n", - " 17 YearMonth 50 non-null int64 \n", - "dtypes: float64(10), int64(8)\n", - "memory usage: 7.2 KB\n" - ] - } - ], - "source": [ - "new_data.info()" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: False, used: False\n", - "TPU available: False, using: 0 TPU cores\n", - "IPU available: False, using: 0 IPUs\n", - "HPU available: False, using: 0 HPUs\n", - "\n", - " | Name | Type | Params\n", - "-------------------------------------\n", - "0 | model | Sequential | 1.2 K \n", - "-------------------------------------\n", - "1.2 K Trainable params\n", - "0 Non-trainable params\n", - "1.2 K Total params\n", - "0.005 Total estimated model params size (MB)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Python311\\Lib\\site-packages\\pytorch_lightning\\trainer\\connectors\\data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=31` in the `DataLoader` to improve performance.\n", - "c:\\Python311\\Lib\\site-packages\\pytorch_lightning\\loops\\fit_loop.py:293: The number of training batches (3) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3e97e9cb60e34c63a058f7b296eae36b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Training: | | 0/? [00:00