-
Notifications
You must be signed in to change notification settings - Fork 1
/
results
694 lines (694 loc) · 43.2 KB
/
results
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
{{{Subscript[h, tt] -> Function[{t, r}, Subscript[H, tt][t, r] -
(k^2*SubMinus[h][t, r]*Derivative[1][f][r])/
(2*n*S[r]*Derivative[1][S][r]) -
(SubPlus[h][t, r]*Derivative[1][f][r])/(2*n*S[r]*Derivative[1][S][r]) +
2*Derivative[1, 0][Subscript[h, tx]][t, r] -
Derivative[2, 0][SubMinus[h]][t, r]], Subscript[h, tr] ->
Function[{t, r}, Subscript[H, tr][t, r] -
(2*Subscript[h, tx][t, r]*Derivative[1][f][r])/f[r] +
2*Derivative[0, 1][Subscript[h, tx]][t, r] +
((n*Derivative[1][f][r] + (k^2*\[Zeta][r]^2)/
(S[r]*Derivative[1][S][r]))*Derivative[1, 0][SubMinus[h]][t, r])/
(n*f[r]) + (\[Zeta][r]^2*Derivative[1, 0][SubPlus[h]][t, r])/
(n*f[r]*S[r]*Derivative[1][S][r]) - Derivative[1, 1][SubMinus[h]][t,
r]], Subscript[h, rr] -> Function[{t, r}, Subscript[H, rr][t, r] -
(\[Zeta][r]^2*SubPlus[h][t, r]*(n*S[r]*Derivative[1][f][r]*
Derivative[1][S][r] + 2*n*f[r]*Derivative[1][S][r]^2 -
2*\[Eta]*f[r]*S[r]^2*Derivative[1][\[Phi]][r]^2))/
(2*n^2*f[r]^2*S[r]^2*Derivative[1][S][r]^2) +
(k^2*\[Zeta][r]^2*SubMinus[h][t, r]*
(-(n*S[r]*Derivative[1][f][r]*Derivative[1][S][r]) -
2*n*f[r]*Derivative[1][S][r]^2 + 2*\[Eta]*f[r]*S[r]^2*
Derivative[1][\[Phi]][r]^2))/(2*n^2*f[r]^2*S[r]^2*
Derivative[1][S][r]^2) + (k^2*\[Zeta][r]^2*
Derivative[0, 1][SubMinus[h]][t, r])/(n*f[r]*S[r]*
Derivative[1][S][r]) + (\[Zeta][r]^2*Derivative[0, 1][SubPlus[h]][t,
r])/(n*f[r]*S[r]*Derivative[1][S][r])],
Subscript[h, rx] -> Function[{t, r}, Subscript[H, rx][t, r] +
(\[Zeta][r]^2*SubPlus[h][t, r])/(2*n*f[r]*S[r]*Derivative[1][S][r]) +
(SubMinus[h][t, r]*((k^2*\[Zeta][r]^2)/f[r] -
2*n*Derivative[1][S][r]^2))/(2*n*S[r]*Derivative[1][S][r]) +
Derivative[0, 1][SubMinus[h]][t, r]/2], Subscript[\[Delta]a, tt] ->
Function[{t, r}, Subscript[A, tt][t, r] +
(k^2*SubMinus[h][t, r]*Derivative[1][a][r])/
(2*n*S[r]*Derivative[1][S][r]) +
(SubPlus[h][t, r]*Derivative[1][a][r])/(2*n*S[r]*Derivative[1][S][r]) +
Derivative[1, 0][Subscript[\[Delta]a, xx]][t, r]],
Subscript[\[Delta]a, rr] -> Function[{t, r}, Subscript[A, rr][t, r] +
(Subscript[h, tx][t, r]*Derivative[1][a][r])/f[r] +
Derivative[0, 1][Subscript[\[Delta]a, xx]][t, r] -
(Derivative[1][a][r]*Derivative[1, 0][SubMinus[h]][t, r])/(2*f[r])],
\[Delta]\[Phi] -> Function[{t, r}, \[CapitalPhi]\[Phi][t, r] +
(k^2*SubMinus[h][t, r]*Derivative[1][\[Phi]][r])/
(2*n*S[r]*Derivative[1][S][r]) +
(SubPlus[h][t, r]*Derivative[1][\[Phi]][r])/
(2*n*S[r]*Derivative[1][S][r])], Subscript[h, tz] ->
Function[{t, r}, Subscript[H, tz][t, r] +
Derivative[1, 0][Subscript[h, xz]][t, r]],
Subscript[h, rz] -> Function[{t, r}, Subscript[H, rz][t, r] -
(2*Subscript[h, xz][t, r]*Derivative[1][S][r])/S[r] +
Derivative[0, 1][Subscript[h, xz]][t, r]], Subscript[\[Delta]a, zz] ->
Function[{t, r}, Subscript[A, zz][t, r]], Subscript[h, yz] ->
Function[{t, r}, Subscript[H, yz][t, r]]},
{Subscript[h, tt] -> Function[{t, r}, Subscript[H, tt][t, r] -
(k^2*SubMinus[h][t, r]*Derivative[1][f][r])/
(2*n*S[r]*Derivative[1][S][r]) -
(SubPlus[h][t, r]*Derivative[1][f][r])/(2*n*S[r]*Derivative[1][S][r]) +
2*Derivative[1, 0][Subscript[h, tx]][t, r] -
Derivative[2, 0][SubMinus[h]][t, r]], Subscript[h, tr] ->
Function[{t, r}, Subscript[H, tr][t, r] -
(2*Subscript[h, tx][t, r]*Derivative[1][f][r])/f[r] +
(k^2*\[Zeta][r]*SubMinus[h][t, r]*Derivative[1][f][r])/
(n*f[r]*S[r]*Derivative[1][S][r]) +
(\[Zeta][r]*SubPlus[h][t, r]*Derivative[1][f][r])/
(n*f[r]*S[r]*Derivative[1][S][r]) +
2*Derivative[0, 1][Subscript[h, tx]][t, r] +
((n*Derivative[1][f][r] + (k^2*\[Zeta][r]^2)/
(S[r]*Derivative[1][S][r]))*Derivative[1, 0][SubMinus[h]][t, r])/
(n*f[r]) + (\[Zeta][r]^2*Derivative[1, 0][SubPlus[h]][t, r])/
(n*f[r]*S[r]*Derivative[1][S][r]) -
(2*\[Zeta][r]*Derivative[1, 0][Subscript[h, tx]][t, r])/f[r] -
Derivative[1, 1][SubMinus[h]][t, r] +
(\[Zeta][r]*Derivative[2, 0][SubMinus[h]][t, r])/f[r]],
Subscript[h, rr] -> Function[{t, r}, Subscript[H, rr][t, r] +
(2*\[Zeta][r]*Subscript[h, tx][t, r]*Derivative[1][f][r])/f[r]^2 -
(\[Zeta][r]^2*SubPlus[h][t, r]*(n*S[r]*Derivative[1][f][r]*
Derivative[1][S][r] + n*f[r]*Derivative[1][S][r]^2 -
\[Eta]*f[r]*S[r]^2*Derivative[1][\[Phi]][r]^2))/
(n^2*f[r]^2*S[r]^2*Derivative[1][S][r]^2) +
(k^2*\[Zeta][r]^2*SubMinus[h][t, r]*
(-(n*S[r]*Derivative[1][f][r]*Derivative[1][S][r]) -
n*f[r]*Derivative[1][S][r]^2 + \[Eta]*f[r]*S[r]^2*
Derivative[1][\[Phi]][r]^2))/(n^2*f[r]^2*S[r]^2*
Derivative[1][S][r]^2) + (k^2*\[Zeta][r]^2*
Derivative[0, 1][SubMinus[h]][t, r])/(n*f[r]*S[r]*
Derivative[1][S][r]) + (\[Zeta][r]^2*Derivative[0, 1][SubPlus[h]][t,
r])/(n*f[r]*S[r]*Derivative[1][S][r]) -
(2*\[Zeta][r]*Derivative[0, 1][Subscript[h, tx]][t, r])/f[r] -
(\[Zeta][r]*Derivative[1][f][r]*Derivative[1, 0][SubMinus[h]][t, r])/
f[r]^2 + (\[Zeta][r]*Derivative[1, 1][SubMinus[h]][t, r])/f[r]],
Subscript[h, rx] -> Function[{t, r},
-((\[Zeta][r]*Subscript[h, tx][t, r])/f[r]) + Subscript[H, rx][t, r] +
(\[Zeta][r]^2*SubPlus[h][t, r])/(2*n*f[r]*S[r]*Derivative[1][S][r]) +
(SubMinus[h][t, r]*((k^2*\[Zeta][r]^2)/f[r] -
2*n*Derivative[1][S][r]^2))/(2*n*S[r]*Derivative[1][S][r]) +
Derivative[0, 1][SubMinus[h]][t, r]/2 +
(\[Zeta][r]*Derivative[1, 0][SubMinus[h]][t, r])/(2*f[r])],
Subscript[\[Delta]a, tt] -> Function[{t, r}, Subscript[A, tt][t, r] +
(k^2*SubMinus[h][t, r]*Derivative[1][a][r])/
(2*n*S[r]*Derivative[1][S][r]) +
(SubPlus[h][t, r]*Derivative[1][a][r])/(2*n*S[r]*Derivative[1][S][r]) +
Derivative[1, 0][Subscript[\[Delta]a, xx]][t, r]],
Subscript[\[Delta]a, rr] -> Function[{t, r}, Subscript[A, rr][t, r] +
(Subscript[h, tx][t, r]*Derivative[1][a][r])/f[r] -
(k^2*\[Zeta][r]*SubMinus[h][t, r]*Derivative[1][a][r])/
(2*n*f[r]*S[r]*Derivative[1][S][r]) -
(\[Zeta][r]*SubPlus[h][t, r]*Derivative[1][a][r])/
(2*n*f[r]*S[r]*Derivative[1][S][r]) +
Derivative[0, 1][Subscript[\[Delta]a, xx]][t, r] -
(Derivative[1][a][r]*Derivative[1, 0][SubMinus[h]][t, r])/(2*f[r])],
\[Delta]\[Phi] -> Function[{t, r}, \[CapitalPhi]\[Phi][t, r] +
(k^2*SubMinus[h][t, r]*Derivative[1][\[Phi]][r])/
(2*n*S[r]*Derivative[1][S][r]) +
(SubPlus[h][t, r]*Derivative[1][\[Phi]][r])/
(2*n*S[r]*Derivative[1][S][r])], Subscript[h, tz] ->
Function[{t, r}, Subscript[H, tz][t, r] +
Derivative[1, 0][Subscript[h, xz]][t, r]],
Subscript[h, rz] -> Function[{t, r}, Subscript[H, rz][t, r] -
(2*Subscript[h, xz][t, r]*Derivative[1][S][r])/S[r] +
Derivative[0, 1][Subscript[h, xz]][t, r]], Subscript[\[Delta]a, zz] ->
Function[{t, r}, Subscript[A, zz][t, r]], Subscript[h, yz] ->
Function[{t, r}, Subscript[H, yz][t, r]]},
{Subscript[h, tt] -> Function[{t, r}, Subscript[H, tt][t, r] -
(f[r]*Subscript[h, rx][t, r]*Derivative[1][f][r])/\[Zeta][r]^2 -
(f[r]*SubMinus[h][t, r]*Derivative[1][f][r]*Derivative[1][S][r])/
(S[r]*\[Zeta][r]^2) + (f[r]*Derivative[1][f][r]*
Derivative[0, 1][SubMinus[h]][t, r])/(2*\[Zeta][r]^2) +
2*Derivative[1, 0][Subscript[h, tx]][t, r] -
Derivative[2, 0][SubMinus[h]][t, r]], Subscript[h, tr] ->
Function[{t, r}, Subscript[H, tr][t, r] -
(2*Subscript[h, tx][t, r]*Derivative[1][f][r])/f[r] +
2*Derivative[0, 1][Subscript[h, tx]][t, r] +
(Derivative[1][f][r]/f[r] + (2*Derivative[1][S][r])/S[r])*
Derivative[1, 0][SubMinus[h]][t, r] +
2*Derivative[1, 0][Subscript[h, rx]][t, r] -
2*Derivative[1, 1][SubMinus[h]][t, r]], Subscript[h, rr] ->
Function[{t, r}, Subscript[H, rr][t, r] + Subscript[h, rx][t, r]*
(Derivative[1][f][r]/f[r] - (2*Derivative[1][\[Zeta]][r])/
\[Zeta][r]) + SubMinus[h][t, r]*
((Derivative[1][f][r]*Derivative[1][S][r])/(f[r]*S[r]) -
(2*Derivative[1][S][r]^2)/S[r]^2 -
(2*\[Eta]*Derivative[1][\[Phi]][r]^2)/n) +
(-1/2*Derivative[1][f][r]/f[r] + (2*Derivative[1][S][r])/S[r] +
Derivative[1][\[Zeta]][r]/\[Zeta][r])*Derivative[0, 1][SubMinus[h]][
t, r] + 2*Derivative[0, 1][Subscript[h, rx]][t, r] -
Derivative[0, 2][SubMinus[h]][t, r]],
SubPlus[h] -> Function[{t, r}, SubPlus[H][t, r] +
(2*n*f[r]*S[r]*Subscript[h, rx][t, r]*Derivative[1][S][r])/
\[Zeta][r]^2 + SubMinus[h][t, r]*
(-k^2 + (2*n*f[r]*Derivative[1][S][r]^2)/\[Zeta][r]^2) -
(n*f[r]*S[r]*Derivative[1][S][r]*Derivative[0, 1][SubMinus[h]][t, r])/
\[Zeta][r]^2], Subscript[\[Delta]a, tt] ->
Function[{t, r}, Subscript[A, tt][t, r] +
(f[r]*Subscript[h, rx][t, r]*Derivative[1][a][r])/\[Zeta][r]^2 +
(f[r]*SubMinus[h][t, r]*Derivative[1][a][r]*Derivative[1][S][r])/
(S[r]*\[Zeta][r]^2) - (f[r]*Derivative[1][a][r]*
Derivative[0, 1][SubMinus[h]][t, r])/(2*\[Zeta][r]^2) +
Derivative[1, 0][Subscript[\[Delta]a, xx]][t, r]],
Subscript[\[Delta]a, rr] -> Function[{t, r}, Subscript[A, rr][t, r] +
(Subscript[h, tx][t, r]*Derivative[1][a][r])/f[r] +
Derivative[0, 1][Subscript[\[Delta]a, xx]][t, r] -
(Derivative[1][a][r]*Derivative[1, 0][SubMinus[h]][t, r])/(2*f[r])],
\[Delta]\[Phi] -> Function[{t, r}, \[CapitalPhi]\[Phi][t, r] +
(f[r]*Subscript[h, rx][t, r]*Derivative[1][\[Phi]][r])/\[Zeta][r]^2 +
(f[r]*SubMinus[h][t, r]*Derivative[1][S][r]*Derivative[1][\[Phi]][r])/
(S[r]*\[Zeta][r]^2) - (f[r]*Derivative[1][\[Phi]][r]*
Derivative[0, 1][SubMinus[h]][t, r])/(2*\[Zeta][r]^2)],
Subscript[h, tz] -> Function[{t, r}, Subscript[H, tz][t, r] +
Derivative[1, 0][Subscript[h, xz]][t, r]],
Subscript[h, rz] -> Function[{t, r}, Subscript[H, rz][t, r] -
(2*Subscript[h, xz][t, r]*Derivative[1][S][r])/S[r] +
Derivative[0, 1][Subscript[h, xz]][t, r]], Subscript[\[Delta]a, zz] ->
Function[{t, r}, Subscript[A, zz][t, r]], Subscript[h, yz] ->
Function[{t, r}, Subscript[H, yz][t, r]]},
{Subscript[h, tt] -> Function[{t, r}, Subscript[H, tt][t, r] -
(f[r]*Subscript[h, rx][t, r]*Derivative[1][f][r])/\[Zeta][r]^2 -
(Subscript[h, tx][t, r]*Derivative[1][f][r])/\[Zeta][r] -
(f[r]*SubMinus[h][t, r]*Derivative[1][f][r]*Derivative[1][S][r])/
(S[r]*\[Zeta][r]^2) + (f[r]*Derivative[1][f][r]*
Derivative[0, 1][SubMinus[h]][t, r])/(2*\[Zeta][r]^2) +
(Derivative[1][f][r]*Derivative[1, 0][SubMinus[h]][t, r])/
(2*\[Zeta][r]) + 2*Derivative[1, 0][Subscript[h, tx]][t, r] -
Derivative[2, 0][SubMinus[h]][t, r]], Subscript[h, tr] ->
Function[{t, r}, Subscript[H, tr][t, r] +
(2*Subscript[h, rx][t, r]*Derivative[1][f][r])/\[Zeta][r] +
(2*SubMinus[h][t, r]*Derivative[1][f][r]*Derivative[1][S][r])/
(S[r]*\[Zeta][r]) - (Derivative[1][f][r]*Derivative[0, 1][SubMinus[h]][
t, r])/\[Zeta][r] + 2*Derivative[0, 1][Subscript[h, tx]][t, r] +
(2*Derivative[1][S][r]*Derivative[1, 0][SubMinus[h]][t, r])/S[r] +
2*Derivative[1, 0][Subscript[h, rx]][t, r] -
2*Derivative[1, 1][SubMinus[h]][t, r]], Subscript[h, rr] ->
Function[{t, r}, Subscript[H, rr][t, r] -
(2*Subscript[h, rx][t, r]*Derivative[1][\[Zeta]][r])/\[Zeta][r] +
SubMinus[h][t, r]*((-2*Derivative[1][S][r]^2)/S[r]^2 -
(2*\[Eta]*Derivative[1][\[Phi]][r]^2)/n) +
((2*Derivative[1][S][r])/S[r] + Derivative[1][\[Zeta]][r]/\[Zeta][r])*
Derivative[0, 1][SubMinus[h]][t, r] +
2*Derivative[0, 1][Subscript[h, rx]][t, r] -
Derivative[0, 2][SubMinus[h]][t, r]],
SubPlus[h] -> Function[{t, r}, SubPlus[H][t, r] +
(2*n*f[r]*S[r]*Subscript[h, rx][t, r]*Derivative[1][S][r])/
\[Zeta][r]^2 + (2*n*S[r]*Subscript[h, tx][t, r]*Derivative[1][S][r])/
\[Zeta][r] + SubMinus[h][t, r]*(-k^2 +
(2*n*f[r]*Derivative[1][S][r]^2)/\[Zeta][r]^2) -
(n*f[r]*S[r]*Derivative[1][S][r]*Derivative[0, 1][SubMinus[h]][t, r])/
\[Zeta][r]^2 - (n*S[r]*Derivative[1][S][r]*
Derivative[1, 0][SubMinus[h]][t, r])/\[Zeta][r]],
Subscript[\[Delta]a, tt] -> Function[{t, r}, Subscript[A, tt][t, r] +
(f[r]*Subscript[h, rx][t, r]*Derivative[1][a][r])/\[Zeta][r]^2 +
(Subscript[h, tx][t, r]*Derivative[1][a][r])/\[Zeta][r] +
(f[r]*SubMinus[h][t, r]*Derivative[1][a][r]*Derivative[1][S][r])/
(S[r]*\[Zeta][r]^2) - (f[r]*Derivative[1][a][r]*
Derivative[0, 1][SubMinus[h]][t, r])/(2*\[Zeta][r]^2) -
(Derivative[1][a][r]*Derivative[1, 0][SubMinus[h]][t, r])/
(2*\[Zeta][r]) + Derivative[1, 0][Subscript[\[Delta]a, xx]][t, r]],
Subscript[\[Delta]a, rr] -> Function[{t, r}, Subscript[A, rr][t, r] -
(Subscript[h, rx][t, r]*Derivative[1][a][r])/\[Zeta][r] -
(SubMinus[h][t, r]*Derivative[1][a][r]*Derivative[1][S][r])/
(S[r]*\[Zeta][r]) + (Derivative[1][a][r]*Derivative[0, 1][SubMinus[h]][
t, r])/(2*\[Zeta][r]) + Derivative[0, 1][Subscript[\[Delta]a, xx]][
t, r]], \[Delta]\[Phi] -> Function[{t, r}, \[CapitalPhi]\[Phi][t, r] +
(f[r]*Subscript[h, rx][t, r]*Derivative[1][\[Phi]][r])/\[Zeta][r]^2 +
(Subscript[h, tx][t, r]*Derivative[1][\[Phi]][r])/\[Zeta][r] +
(f[r]*SubMinus[h][t, r]*Derivative[1][S][r]*Derivative[1][\[Phi]][r])/
(S[r]*\[Zeta][r]^2) - (f[r]*Derivative[1][\[Phi]][r]*
Derivative[0, 1][SubMinus[h]][t, r])/(2*\[Zeta][r]^2) -
(Derivative[1][\[Phi]][r]*Derivative[1, 0][SubMinus[h]][t, r])/
(2*\[Zeta][r])], Subscript[h, tz] -> Function[{t, r},
Subscript[H, tz][t, r] + Derivative[1, 0][Subscript[h, xz]][t, r]],
Subscript[h, rz] -> Function[{t, r}, Subscript[H, rz][t, r] -
(2*Subscript[h, xz][t, r]*Derivative[1][S][r])/S[r] +
Derivative[0, 1][Subscript[h, xz]][t, r]], Subscript[\[Delta]a, zz] ->
Function[{t, r}, Subscript[A, zz][t, r]], Subscript[h, yz] ->
Function[{t, r}, Subscript[H, yz][t, r]]}},
{Subscript[H, yz] -> Function[{t, r}, S[r]^2*Subscript[C[\[Alpha]H], TT, 1,
0, 0]*Subscript[\[CapitalPhi], 2, 2][t, r]],
Subscript[H, tz] -> Function[{t, r}, Subscript[C[\[Alpha]H], a, vv, 1, 0,
1]*((n*f[r]*S[r]*Subscript[\[CapitalPhi], 2, 1][t, r]*
Derivative[1][S][r])/\[Zeta][r] +
(f[r]*S[r]^2*Derivative[0, 1][Subscript[\[CapitalPhi], 2, 1]][t, r])/
\[Zeta][r])], Subscript[H, rz] -> Function[{t, r},
(S[r]^2*Subscript[C[\[Alpha]H], a, vv, 1, 0, 1]*\[Zeta][r]*
Derivative[1, 0][Subscript[\[CapitalPhi], 2, 1]][t, r])/f[r]],
Subscript[A, zz] -> Function[{t, r},
(Sqrt[k^2 - K*n]*S[r]*Subscript[C[\[Alpha]H], a, vv, 1, 0, 1]*
Subscript[\[CapitalPhi], 1, 1][t, r])/Sqrt[Z[\[Phi][r]]]],
\[CapitalPhi]\[Phi] -> Function[{t, r},
-((k*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*
Subscript[\[CapitalPhi], 0, 0][t, r])/(Sqrt[n]*Sqrt[\[Eta]])) +
(k^2*S[r]*Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*
Subscript[\[CapitalPhi], 2, 0][t, r]*Derivative[1][\[Phi]][r])/
(n*Derivative[1][S][r])], Subscript[A, tt] ->
Function[{t, r}, (S[r]*Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*
Subscript[\[CapitalPhi], 2, 0][t, r]*Derivative[1][a][r]*
(2*k^4*\[Zeta][r]^2 + n*Derivative[1][S][r]*
(k^2*S[r]*Derivative[1][f][r] + 2*(k^2*(-2 + n) - K*(-1 + n)*n)*f[r]*
Derivative[1][S][r])))/(n*\[ScriptCapitalD][r]*
Derivative[1][S][r]) + (2*k*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*Sqrt[\[Eta]]*
f[r]*S[r]^2*Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*
Subscript[\[CapitalPhi], 0, 0][t, r]*Derivative[1][a][r]*
Derivative[1][\[Phi]][r])/(Sqrt[n]*\[ScriptCapitalD][r]) -
(Sqrt[2]*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*Subscript[C[\[Alpha]H], p, vv, 2,
0, 1]*((f[r]*S[r]*Subscript[\[CapitalPhi], 1, 0][t, r]*
(((-1 + n)*Derivative[1][S][r])/S[r] + (n*S[r]*Z[\[Phi][r]]*
Derivative[1][a][r]^2*Derivative[1][S][r])/\[ScriptCapitalD][
r] + (Derivative[1][Z][\[Phi][r]]*Derivative[1][\[Phi]][r])/
(2*Z[\[Phi][r]])))/(Sqrt[Z[\[Phi][r]]]*\[Zeta][r]) +
(f[r]*S[r]*Derivative[0, 1][Subscript[\[CapitalPhi], 1, 0]][t, r])/
(Sqrt[Z[\[Phi][r]]]*\[Zeta][r])))/Sqrt[n]],
Subscript[A, rr] -> Function[{t, r},
-((Sqrt[2]*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*S[r]*Subscript[C[\[Alpha]H], p,
vv, 2, 0, 1]*\[Zeta][r]*Derivative[1, 0][Subscript[\[CapitalPhi], 1,
0]][t, r])/(Sqrt[n]*f[r]*Sqrt[Z[\[Phi][r]]])) -
(S[r]^2*Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*Derivative[1][a][r]*
Derivative[1, 0][Subscript[\[CapitalPhi], 2, 0]][t, r])/f[r]],
Subscript[H, rr] -> Function[{t, r},
(-2*Sqrt[2]*k^2*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*S[r]*Subscript[C[\[Alpha]H],
p, vv, 2, 0, 1]*Sqrt[Z[\[Phi][r]]]*\[Zeta][r]^3*
Subscript[\[CapitalPhi], 1, 0][t, r]*Derivative[1][a][r])/
(Sqrt[n]*f[r]*\[ScriptCapitalD][r]) -
(2*k*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*Sqrt[\[Eta]]*S[r]*
Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*\[Zeta][r]^2*
Subscript[\[CapitalPhi], 0, 0][t, r]*(S[r]*Derivative[1][f][r] -
2*f[r]*Derivative[1][S][r])*Derivative[1][\[Phi]][r])/
(Sqrt[n]*f[r]*\[ScriptCapitalD][r]) +
Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*
((k^2*\[Zeta][r]^2*Subscript[\[CapitalPhi], 2, 0][t, r]*
(4*n^2*f[r]*Derivative[1][S][r]^2*((k^2 + K - K*n)*\[Zeta][r]^2 -
f[r]*Derivative[1][S][r]^2) + 2*n*S[r]*Derivative[1][f][r]*
Derivative[1][S][r]*(-(k^2*\[Zeta][r]^2) +
2*n*f[r]*Derivative[1][S][r]^2) + 2*n*\[Eta]*f[r]*S[r]^3*
Derivative[1][f][r]*Derivative[1][S][r]*Derivative[1][\[Phi]][r]^
2 - S[r]^2*(n^2*Derivative[1][f][r]^2*Derivative[1][S][r]^2 +
4*\[Eta]*f[r]*(-(k^2*\[Zeta][r]^2) + n*f[r]*Derivative[1][S][r]^
2)*Derivative[1][\[Phi]][r]^2)))/(n^2*f[r]^2*
\[ScriptCapitalD][r]*Derivative[1][S][r]^2) +
(2*k^2*S[r]*\[Zeta][r]^2*Derivative[0, 1][Subscript[\[CapitalPhi], 2,
0]][t, r])/(n*f[r]*Derivative[1][S][r]))],
Subscript[H, rx] -> Function[{t, r},
-((Sqrt[2]*Sqrt[-1 + n]*Sqrt[n]*Sqrt[k^2 - K*n]*S[r]^2*
Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*Sqrt[Z[\[Phi][r]]]*\[Zeta][r]*
Subscript[\[CapitalPhi], 1, 0][t, r]*Derivative[1][a][r]*
Derivative[1][S][r])/\[ScriptCapitalD][r]) +
(2*k*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*Sqrt[\[Eta]]*S[r]^2*
Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*\[Zeta][r]^2*
Subscript[\[CapitalPhi], 0, 0][t, r]*Derivative[1][\[Phi]][r])/
(Sqrt[n]*\[ScriptCapitalD][r]) + Subscript[C[\[Alpha]H], p, vv, 2, 0,
1]*((S[r]*\[Zeta][r]^2*Subscript[\[CapitalPhi], 2, 0][t, r]*
(2*k^4*\[Zeta][r]^2 + n*Derivative[1][S][r]*
(k^2*S[r]*Derivative[1][f][r] + 2*(k^2*(-2 + n) - K*(-1 + n)*n)*
f[r]*Derivative[1][S][r])))/(n*f[r]*\[ScriptCapitalD][r]*
Derivative[1][S][r]) + S[r]^2*Derivative[0, 1][
Subscript[\[CapitalPhi], 2, 0]][t, r])],
Subscript[H, tt] -> Function[{t, r},
-((k*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*
(-((f[r]*S[r]*Subscript[\[CapitalPhi], 0, 0][t, r]*
(8*\[Eta]*f[r]*Derivative[1][S][r]*((k^2 - K*(-1 + n)*n)*
\[Zeta][r]^2 + (-2 + n)*n*f[r]*Derivative[1][S][r]^2)*
Derivative[1][\[Phi]][r] - 4*\[Eta]^2*f[r]*S[r]^3*
Derivative[1][f][r]*Derivative[1][\[Phi]][r]^3 +
S[r]*(-4*k^2*\[Zeta][r]^4*Derivative[1][V][\[Phi][r]] +
\[ScriptCapitalD][r]*Derivative[1][a][r]^2*Derivative[1][Z][
\[Phi][r]] - 4*(-3 + n)*n*\[Eta]*f[r]*Derivative[1][f][r]*
Derivative[1][S][r]^2*Derivative[1][\[Phi]][r] + 4*
\[Zeta][r]^2*(n*f[r]*Derivative[1][S][r]^2*Derivative[1][V][
\[Phi][r]] - k^2*\[Eta]*Derivative[1][f][r]*
Derivative[1][\[Phi]][r])) - 2*S[r]^2*Derivative[1][S][r]*
(n*\[Zeta][r]^2*Derivative[1][f][r]*Derivative[1][V][
\[Phi][r]] + \[Eta]*Derivative[1][\[Phi]][r]*
(-2*n*f[r]*Z[\[Phi][r]]*Derivative[1][a][r]^2 +
n*Derivative[1][f][r]^2 - 4*\[Eta]*f[r]^2*
Derivative[1][\[Phi]][r]^2))))/\[ScriptCapitalD][r]^2) +
(4*\[Eta]*f[r]^2*S[r]^2*Derivative[1][\[Phi]][r]*
Derivative[0, 1][Subscript[\[CapitalPhi], 0, 0]][t, r])/
\[ScriptCapitalD][r]))/(Sqrt[n]*Sqrt[\[Eta]])) -
(Sqrt[2]*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*Subscript[C[\[Alpha]H], p, vv, 2,
0, 1]*(-((f[r]*S[r]*Subscript[\[CapitalPhi], 1, 0][t, r]*
Derivative[1][a][r]*(-2*n^2*f[r]*S[r]^2*Z[\[Phi][r]]^2*
Derivative[1][a][r]^2*Derivative[1][S][r]^2 +
n*f[r]*S[r]*Derivative[1][S][r]*(-2*k^2*\[Zeta][r]^2 +
n*Derivative[1][S][r]*(-(S[r]*Derivative[1][f][r]) +
2*f[r]*Derivative[1][S][r]))*Derivative[1][Z][\[Phi][r]]*
Derivative[1][\[Phi]][r] + 2*Z[\[Phi][r]]*(-2*k^4*\[Zeta][r]^4 +
n^2*Derivative[1][S][r]^2*(S[r]*Derivative[1][f][r] -
2*f[r]*Derivative[1][S][r])*(S[r]*Derivative[1][f][r] +
(-1 + n)*f[r]*Derivative[1][S][r]) + \[Zeta][r]^2*(
k^2*n*S[r]*Derivative[1][f][r]*Derivative[1][S][r] +
2*n*(k^2 + K*(-1 + n)*n)*f[r]*Derivative[1][S][r]^2 -
2*k^2*\[Eta]*f[r]*S[r]^2*Derivative[1][\[Phi]][r]^2))))/
(Sqrt[Z[\[Phi][r]]]*\[ScriptCapitalD][r]^2*\[Zeta][r])) -
(2*n*f[r]^2*S[r]^2*Sqrt[Z[\[Phi][r]]]*Derivative[1][a][r]*
Derivative[1][S][r]*Derivative[0, 1][Subscript[\[CapitalPhi], 1,
0]][t, r])/(\[ScriptCapitalD][r]*\[Zeta][r])))/Sqrt[n] +
Subscript[C[\[Alpha]H], p, vv, 2, 0, 1]*
((Subscript[\[CapitalPhi], 2, 0][t, r]*(-4*n*S[r]*Derivative[1][f][r]*
Derivative[1][S][r]*(k^6*\[Zeta][r]^4 + k^2*n*(-(K*(-1 + n)*n) +
k^2*(-7 + 3*n))*f[r]*\[Zeta][r]^2*Derivative[1][S][r]^2 +
n^2*(-2*K*n*(2 - 3*n + n^2) + k^2*(9 - 8*n + 2*n^2))*f[r]^2*
Derivative[1][S][r]^4) + 8*n*f[r]*Derivative[1][S][r]^2*
(k^4*(k^2 - K*(-1 + n)*n)*\[Zeta][r]^4 +
n*(k^2*K*(-1 + n)*n + K^2*(-1 + n)^2*n^2 - k^4*(4 - 3*n + n^2))*
f[r]*\[Zeta][r]^2*Derivative[1][S][r]^2 +
n^2*(-2*K*(-1 + n)^2*n + k^2*(4 - 5*n + 2*n^2))*f[r]^2*
Derivative[1][S][r]^4) + 4*k^2*n*\[Eta]^2*f[r]^2*S[r]^5*
Derivative[1][f][r]*Derivative[1][S][r]*Derivative[1][\[Phi]][r]^
4 + 2*k^2*f[r]*S[r]^4*Derivative[1][\[Phi]][r]*
(2*\[Eta]*Derivative[1][\[Phi]][r]*(n^2*Derivative[1][f][r]^2*
Derivative[1][S][r]^2 - 2*\[Eta]*f[r]*(\[ScriptCapitalD][r] +
n*f[r]*Derivative[1][S][r]^2)*Derivative[1][\[Phi]][r]^2) +
\[Zeta][r]^2*(n^2*Derivative[1][f][r]*Derivative[1][S][r]^2*
Derivative[1][V][\[Phi][r]] + 4*k^2*\[Eta]^2*f[r]*
Derivative[1][\[Phi]][r]^3)) - 2*n*S[r]^2*Derivative[1][S][r]^
2*(2*k^2*\[Zeta][r]^2*(k^2*n*Derivative[1][f][r]^2 +
2*(-1 + n)*(-2*k^2 + K*n)*\[Eta]*f[r]^2*Derivative[1][\[Phi]][
r]^2) + f[r]*(n^2*(3*k^2*(-2 + n) - 2*K*(-1 + n)*n)*
Derivative[1][f][r]^2*Derivative[1][S][r]^2 +
4*k^2*(-1 + n)*n*\[Eta]*f[r]^2*Derivative[1][S][r]^2*
Derivative[1][\[Phi]][r]^2 - 2*f[r]*((-1 + n)*n^2*(k^2 - K*n)*
Z[\[Phi][r]]*Derivative[1][a][r]^2*Derivative[1][S][r]^2 +
k^2*\[Eta]*\[ScriptCapitalD][r]*Derivative[1][\[Phi]][r]^
2))) + k^2*n*S[r]^3*(-(n^2*Derivative[1][f][r]^3*
Derivative[1][S][r]^3) + 4*\[Eta]*f[r]*Derivative[1][f][r]*
Derivative[1][S][r]*(2*k^2*\[Zeta][r]^2 + (-3 + n)*n*f[r]*
Derivative[1][S][r]^2)*Derivative[1][\[Phi]][r]^2 +
f[r]*Derivative[1][\[Phi]][r]*(4*\[Zeta][r]^2*Derivative[1][S][
r]*(k^2*\[Zeta][r]^2 - n*f[r]*Derivative[1][S][r]^2)*
Derivative[1][V][\[Phi][r]] + \[ScriptCapitalD][r]*(
-4*\[Zeta][r]^2*Derivative[1][S][r]*Derivative[1][V][
\[Phi][r]] + Derivative[1][a][r]^2*Derivative[1][S][r]*
Derivative[1][Z][\[Phi][r]] + 4*\[Eta]*f[r]*
(-(Derivative[1][\[Phi]][r]*Derivative[2][S][r]) +
Derivative[1][S][r]*Derivative[2][\[Phi]][r]))))))/
(n^2*\[ScriptCapitalD][r]^2*Derivative[1][S][r]^2) -
(2*f[r]*S[r]*(-2*f[r]*\[Zeta][r]*Derivative[1][S][r]*
((k^2*(1 - 2*n) + K*(-1 + n)*n)*\[Zeta][r]^2 +
n^2*f[r]*Derivative[1][S][r]^2) + n*S[r]^2*Derivative[1][f][r]*
Derivative[1][S][r]*(\[Zeta][r]*Derivative[1][f][r] -
f[r]*Derivative[1][\[Zeta]][r]) +
S[r]*(2*k^2*\[Zeta][r]^3*Derivative[1][f][r] + (-2 + n)*n*f[r]*
\[Zeta][r]*Derivative[1][f][r]*Derivative[1][S][r]^2 -
2*k^2*f[r]*\[Zeta][r]^2*Derivative[1][\[Zeta]][r] +
2*n*f[r]^2*Derivative[1][S][r]^2*Derivative[1][\[Zeta]][r]))*
Derivative[0, 1][Subscript[\[CapitalPhi], 2, 0]][t, r])/
(\[ScriptCapitalD][r]*\[Zeta][r]^3) -
(2*f[r]^2*S[r]^2*Derivative[0, 2][Subscript[\[CapitalPhi], 2, 0]][t,
r])/\[Zeta][r]^2)], Subscript[H, tr] ->
Function[{t, r}, (4*\[Eta]*S[r]^2*Derivative[1][\[Phi]][r]*
Derivative[1, 0][\[CapitalPhi]\[Phi]][t, r])/k^2 -
(2*n*f[r]*S[r]*Derivative[1][S][r]*Derivative[1, 0][Subscript[H, rr]][t,
r])/(k^2*\[Zeta][r]^2) + 2*Derivative[1, 0][Subscript[H, rx]][t, r]],
\[ScriptCapitalD] -> Function[{r}, 2*k^2*\[Zeta][r]^2 +
n*(S[r]*Derivative[1][f][r]*Derivative[1][S][r] -
2*f[r]*Derivative[1][S][r]^2)]},
{{{Subscript[HEF, rr][t, r] -> Subscript[HFG, rr][t, r] -
(\[Zeta][r]*Subscript[HFG, tr][t, r])/f[r] +
(\[Zeta][r]^2*Subscript[HFG, tt][t, r])/f[r]^2,
Subscript[HEF, tr][t, r] -> Subscript[HFG, tr][t, r] -
(2*\[Zeta][r]*Subscript[HFG, tt][t, r])/f[r],
Subscript[HEF, rz][t, r] -> Subscript[HFG, rz][t, r] -
(\[Zeta][r]*Subscript[HFG, tz][t, r])/f[r], Subscript[AEF, rr][t, r] ->
Subscript[AFG, rr][t, r] - (\[Zeta][r]*Subscript[AFG, tt][t, r])/f[r],
Subscript[HEF, rx][t, r] -> Subscript[HFG, rx][t, r],
Subscript[HEF, tt][t, r] -> Subscript[HFG, tt][t, r],
Subscript[HEF, tz][t, r] -> Subscript[HFG, tz][t, r],
Subscript[AEF, tt][t, r] -> Subscript[AFG, tt][t, r],
Subscript[AEF, zz][t, r] -> Subscript[AFG, zz][t, r],
Subscript[HEF, yz][t, r] -> Subscript[HFG, yz][t, r],
\[CapitalPhi]\[Phi]EF[t, r] -> \[CapitalPhi]\[Phi]FG[t, r]},
Derivative[dt_, dr_][g_][t_, r_] /; dr > 0 :>
Nest[D[#1, r] + (\[Zeta][r]*D[#1, t])/f[r] & , Derivative[dt, 0][g][t,
r], dr]}, {{Subscript[HRW, tt][t, r] -> Subscript[HEZ, tt][t, r] +
(f[r]*Subscript[HEZ, rx][t, r]*Derivative[1][f][r])/\[Zeta][r]^2,
Subscript[HRW, tr][t, r] -> Subscript[HEZ, tr][t, r] -
2*Derivative[1, 0][Subscript[HEZ, rx]][t, r],
Subscript[HRW, rr][t, r] -> Subscript[HEZ, rr][t, r] +
Subscript[HEZ, rx][t, r]*(-(Derivative[1][f][r]/f[r]) +
(2*Derivative[1][\[Zeta]][r])/\[Zeta][r]) -
2*Derivative[0, 1][Subscript[HEZ, rx]][t, r],
SubPlus[HRW][t, r] -> (-2*n*f[r]*S[r]*Subscript[HEZ, rx][t, r]*
Derivative[1][S][r])/\[Zeta][r]^2, Subscript[HRW, rx][t, r] -> 0,
Subscript[ARW, tt][t, r] -> Subscript[AEZ, tt][t, r] -
(f[r]*Subscript[HEZ, rx][t, r]*Derivative[1][a][r])/\[Zeta][r]^2,
\[CapitalPhi]\[Phi]RW[t, r] -> \[CapitalPhi]\[Phi]EZ[t, r] -
(f[r]*Subscript[HEZ, rx][t, r]*Derivative[1][\[Phi]][r])/\[Zeta][r]^2},
{Subscript[HRW, tt][t, r] -> Subscript[HEZ, tt][t, r] +
(f[r]*Subscript[HEZ, rx][t, r]*Derivative[1][f][r])/\[Zeta][r]^2,
Subscript[HRW, tr][t, r] -> Subscript[HEZ, tr][t, r] -
(2*Subscript[HEZ, rx][t, r]*Derivative[1][f][r])/\[Zeta][r] -
2*Derivative[1, 0][Subscript[HEZ, rx]][t, r],
Subscript[HRW, rr][t, r] -> Subscript[HEZ, rr][t, r] +
(2*Subscript[HEZ, rx][t, r]*Derivative[1][\[Zeta]][r])/\[Zeta][r] -
2*Derivative[0, 1][Subscript[HEZ, rx]][t, r],
SubPlus[HRW][t, r] -> (-2*n*f[r]*S[r]*Subscript[HEZ, rx][t, r]*
Derivative[1][S][r])/\[Zeta][r]^2, Subscript[HRW, rx][t, r] -> 0,
Subscript[ARW, tt][t, r] -> Subscript[AEZ, tt][t, r] -
(f[r]*Subscript[HEZ, rx][t, r]*Derivative[1][a][r])/\[Zeta][r]^2,
Subscript[ARW, rr][t, r] -> Subscript[AEZ, rr][t, r] +
(Subscript[HEZ, rx][t, r]*Derivative[1][a][r])/\[Zeta][r],
Subscript[ARW, xx][t, r] -> 0, \[CapitalPhi]\[Phi]RW[t, r] ->
\[CapitalPhi]\[Phi]EZ[t, r] - (f[r]*Subscript[HEZ, rx][t, r]*
Derivative[1][\[Phi]][r])/\[Zeta][r]^2}}},
{Derivative[0, 2][Subscript[\[CapitalPhi], 0, 0]][t, r] ->
(\[Zeta][r]^2*Subscript[W, 0, 0][r]*Subscript[\[CapitalPhi], 0, 0][t, r])/
f[r] + (\[Zeta][r]^2*Subscript[W, 0 -> 1, 0][r]*
Subscript[\[CapitalPhi], 1, 0][t, r])/f[r] +
(\[Zeta][r]^2*Subscript[W, 0 -> 2, 0][r]*Subscript[\[CapitalPhi], 2, 0][
t, r])/f[r] + (-(Derivative[1][f][r]/f[r]) - (n*Derivative[1][S][r])/
S[r] + Derivative[1][\[Zeta]][r]/\[Zeta][r])*
Derivative[0, 1][Subscript[\[CapitalPhi], 0, 0]][t, r] +
(\[Zeta][r]^2*Derivative[2, 0][Subscript[\[CapitalPhi], 0, 0]][t, r])/
f[r]^2, Derivative[0, 2][Subscript[\[CapitalPhi], 1, 0]][t, r] ->
(\[Zeta][r]^2*Subscript[W, 1 -> 0, 0][r]*Subscript[\[CapitalPhi], 0, 0][t,
r])/f[r] + (\[Zeta][r]^2*Subscript[W, 1, 0][r]*
Subscript[\[CapitalPhi], 1, 0][t, r])/f[r] +
(\[Zeta][r]^2*Subscript[W, 1 -> 2, 0][r]*Subscript[\[CapitalPhi], 2, 0][
t, r])/f[r] + (-(Derivative[1][f][r]/f[r]) - (n*Derivative[1][S][r])/
S[r] + Derivative[1][\[Zeta]][r]/\[Zeta][r])*
Derivative[0, 1][Subscript[\[CapitalPhi], 1, 0]][t, r] +
(\[Zeta][r]^2*Derivative[2, 0][Subscript[\[CapitalPhi], 1, 0]][t, r])/
f[r]^2, Derivative[0, 2][Subscript[\[CapitalPhi], 2, 0]][t, r] ->
(\[Zeta][r]^2*Subscript[W, 2 -> 0, 0][r]*Subscript[\[CapitalPhi], 0, 0][t,
r])/f[r] + (\[Zeta][r]^2*Subscript[W, 2 -> 1, 0][r]*
Subscript[\[CapitalPhi], 1, 0][t, r])/f[r] +
(\[Zeta][r]^2*Subscript[W, 2, 0][r]*Subscript[\[CapitalPhi], 2, 0][t, r])/
f[r] + (-(Derivative[1][f][r]/f[r]) - (n*Derivative[1][S][r])/S[r] +
Derivative[1][\[Zeta]][r]/\[Zeta][r])*
Derivative[0, 1][Subscript[\[CapitalPhi], 2, 0]][t, r] +
(\[Zeta][r]^2*Derivative[2, 0][Subscript[\[CapitalPhi], 2, 0]][t, r])/
f[r]^2, Derivative[0, 2][Subscript[\[CapitalPhi], 1, 1]][t, r] ->
(\[Zeta][r]^2*Subscript[W, 1, 1][r]*Subscript[\[CapitalPhi], 1, 1][t, r])/
f[r] + (\[Zeta][r]^2*Subscript[W, 1 -> 2, 1][r]*
Subscript[\[CapitalPhi], 2, 1][t, r])/f[r] +
(-(Derivative[1][f][r]/f[r]) - (n*Derivative[1][S][r])/S[r] +
Derivative[1][\[Zeta]][r]/\[Zeta][r])*
Derivative[0, 1][Subscript[\[CapitalPhi], 1, 1]][t, r] +
(\[Zeta][r]^2*Derivative[2, 0][Subscript[\[CapitalPhi], 1, 1]][t, r])/
f[r]^2, Derivative[0, 2][Subscript[\[CapitalPhi], 2, 1]][t, r] ->
(\[Zeta][r]^2*Subscript[W, 2 -> 1, 1][r]*Subscript[\[CapitalPhi], 1, 1][t,
r])/f[r] + (\[Zeta][r]^2*Subscript[W, 2, 1][r]*
Subscript[\[CapitalPhi], 2, 1][t, r])/f[r] +
(-(Derivative[1][f][r]/f[r]) - (n*Derivative[1][S][r])/S[r] +
Derivative[1][\[Zeta]][r]/\[Zeta][r])*
Derivative[0, 1][Subscript[\[CapitalPhi], 2, 1]][t, r] +
(\[Zeta][r]^2*Derivative[2, 0][Subscript[\[CapitalPhi], 2, 1]][t, r])/
f[r]^2, Derivative[0, 2][Subscript[\[CapitalPhi], 2, 2]][t, r] ->
(\[Zeta][r]^2*Subscript[W, 2, 2][r]*Subscript[\[CapitalPhi], 2, 2][t, r])/
f[r] + (-(Derivative[1][f][r]/f[r]) - (n*Derivative[1][S][r])/S[r] +
Derivative[1][\[Zeta]][r]/\[Zeta][r])*
Derivative[0, 1][Subscript[\[CapitalPhi], 2, 2]][t, r] +
(\[Zeta][r]^2*Derivative[2, 0][Subscript[\[CapitalPhi], 2, 2]][t, r])/
f[r]^2}, {Subscript[W, 2, 2] -> Function[{r}, k^2/S[r]^2],
Subscript[W, 1, 1] -> Function[{r}, k^2/S[r]^2 +
(Z[\[Phi][r]]*Derivative[1][a][r]^2)/\[Zeta][r]^2 -
(Derivative[1][f][r]*Derivative[1][S][r])/(S[r]*\[Zeta][r]^2) +
(-2 + n)*(K/S[r]^2 - (f[r]*Derivative[1][S][r]^2)/
(S[r]^2*\[Zeta][r]^2)) + (\[Eta]*f[r]*Derivative[1][\[Phi]][r]^2)/
(n*\[Zeta][r]^2) + (Derivative[1][Z][\[Phi][r]]*
(Derivative[1][V][\[Phi][r]]/(4*\[Eta]) -
(f[r]*Derivative[1][S][r]*Derivative[1][\[Phi]][r])/
(S[r]*\[Zeta][r]^2)))/Z[\[Phi][r]] +
(Derivative[1][Z][\[Phi][r]]^2*
(-1/8*(Z[\[Phi][r]]*Derivative[1][a][r]^2)/(\[Eta]*\[Zeta][r]^2) -
(f[r]*Derivative[1][\[Phi]][r]^2)/(4*\[Zeta][r]^2)))/Z[\[Phi][r]]^2 +
(f[r]*Derivative[1][\[Phi]][r]^2*Derivative[2][Z][\[Phi][r]])/
(2*Z[\[Phi][r]]*\[Zeta][r]^2)], Subscript[W, 1 -> 2, 1] ->
Function[{r}, -((Sqrt[k^2 - K*n]*Sqrt[Z[\[Phi][r]]]*Derivative[1][a][r])/
(S[r]*\[Zeta][r]))], Subscript[W, 2 -> 1, 1] ->
Function[{r}, -((Sqrt[k^2 - K*n]*Sqrt[Z[\[Phi][r]]]*Derivative[1][a][r])/
(S[r]*\[Zeta][r]))], Subscript[W, 2, 1] ->
Function[{r}, k^2/S[r]^2 -
n*(K/S[r]^2 + (Derivative[1][f][r]*Derivative[1][S][r])/
(S[r]*\[Zeta][r]^2) - (f[r]*Derivative[1][S][r]^2)/
(S[r]^2*\[Zeta][r]^2)) + (\[Eta]*f[r]*Derivative[1][\[Phi]][r]^2)/
\[Zeta][r]^2], Subscript[W, 0, 0] ->
Function[{r}, k^2/S[r]^2 +
((\[ScriptCapitalD][r]^2*Derivative[1][a][r]^2*
Derivative[1][Z][\[Phi][r]]^2)/(2*\[Eta]*Z[\[Phi][r]]) +
S[r]*\[ScriptCapitalD][r]*Derivative[1][a][r]^2*
(-(S[r]*Derivative[1][f][r]) + 2*f[r]*Derivative[1][S][r])*
Derivative[1][Z][\[Phi][r]]*Derivative[1][\[Phi]][r] +
4*k^2*\[Eta]*f[r]*S[r]^2*Z[\[Phi][r]]*\[Zeta][r]^2*
Derivative[1][a][r]^2*Derivative[1][\[Phi]][r]^2 +
(32*k^2*(k^2 + K - K*n)*\[Eta]^2*f[r]*\[Zeta][r]^4*
Derivative[1][\[Phi]][r]^2 + 16*(-2 + n)*\[Eta]^2*f[r]^2*
\[ScriptCapitalD][r]*Derivative[1][S][r]^2*Derivative[1][\[Phi]][r]^
2 - 32*n*\[Eta]^2*f[r]^3*Derivative[1][S][r]^4*
Derivative[1][\[Phi]][r]^2 + 8*\[Eta]^3*f[r]*S[r]^4*
Derivative[1][f][r]^2*Derivative[1][\[Phi]][r]^4 -
32*\[Eta]^3*f[r]^2*S[r]^3*Derivative[1][f][r]*Derivative[1][S][r]*
Derivative[1][\[Phi]][r]^4 + 8*\[Eta]*f[r]*S[r]*Derivative[1][S][r]*
Derivative[1][\[Phi]][r]*(-2*\[ScriptCapitalD][r]*\[Zeta][r]^2*
Derivative[1][V][\[Phi][r]] + \[Eta]*Derivative[1][f][r]*
(-((-4 + n)*\[ScriptCapitalD][r]) + 4*n*f[r]*Derivative[1][S][
r]^2)*Derivative[1][\[Phi]][r]) + 8*\[Eta]*S[r]^2*
Derivative[1][\[Phi]][r]*(\[ScriptCapitalD][r]*\[Zeta][r]^2*
Derivative[1][f][r]*Derivative[1][V][\[Phi][r]] -
\[Eta]*Derivative[1][f][r]^2*(\[ScriptCapitalD][r] +
n*f[r]*Derivative[1][S][r]^2)*Derivative[1][\[Phi]][r] +
4*\[Eta]^2*f[r]^3*Derivative[1][S][r]^2*Derivative[1][\[Phi]][r]^
3) + \[ScriptCapitalD][r]^2*(2*\[Zeta][r]^2*Derivative[2][V][
\[Phi][r]] - Derivative[1][a][r]^2*Derivative[2][Z][\[Phi][r]]))/
(4*\[Eta]))/(\[ScriptCapitalD][r]^2*\[Zeta][r]^2)],
Subscript[W, 0 -> 1, 0] -> Function[{r},
(k*Sqrt[Z[\[Phi][r]]]*Derivative[1][a][r]*
(2*S[r]*\[ScriptCapitalD][r]*\[Zeta][r]^2*Derivative[1][V][\[Phi][r]] -
S[r]*\[ScriptCapitalD][r]*Derivative[1][a][r]^2*
Derivative[1][Z][\[Phi][r]] - 4*n*\[Eta]*f[r]*S[r]^2*Z[\[Phi][r]]*
Derivative[1][a][r]^2*Derivative[1][S][r]*Derivative[1][\[Phi]][r] +
4*\[Eta]*f[r]*Derivative[1][S][r]*(2*(k^2*(1 - 2*n) + K*(-1 + n)*n)*
\[Zeta][r]^2 + n^2*Derivative[1][S][r]*
(-(S[r]*Derivative[1][f][r]) + 2*f[r]*Derivative[1][S][r]))*
Derivative[1][\[Phi]][r] + 4*\[Eta]^2*f[r]*S[r]^2*
(S[r]*Derivative[1][f][r] - 2*f[r]*Derivative[1][S][r])*
Derivative[1][\[Phi]][r]^3 - (\[ScriptCapitalD][r]*
Derivative[1][Z][\[Phi][r]]*(\[ScriptCapitalD][r] +
2*\[Eta]*f[r]*S[r]^2*Derivative[1][\[Phi]][r]^2))/
(S[r]*Z[\[Phi][r]])))/(Sqrt[2]*Sqrt[\[Eta]]*\[ScriptCapitalD][r]^2*
\[Zeta][r])], Subscript[W, 0 -> 2, 0] ->
Function[{r}, -((k*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*
(\[ScriptCapitalD][r]*(2*\[Zeta][r]^2*Derivative[1][V][\[Phi][r]] -
Derivative[1][a][r]^2*Derivative[1][Z][\[Phi][r]]) +
(4*\[Eta]*f[r]*Derivative[1][\[Phi]][r]*
(-(n*Derivative[1][S][r]*(2*(k^2 + K - K*n)*\[Zeta][r]^2 +
S[r]^2*Z[\[Phi][r]]*Derivative[1][a][r]^2 +
S[r]*Derivative[1][f][r]*Derivative[1][S][r] -
2*f[r]*Derivative[1][S][r]^2)) + \[Eta]*S[r]^2*
(S[r]*Derivative[1][f][r] - 2*f[r]*Derivative[1][S][r])*
Derivative[1][\[Phi]][r]^2))/S[r]))/(Sqrt[n]*Sqrt[\[Eta]]*
\[ScriptCapitalD][r]^2))], Subscript[W, 1 -> 0, 0] ->
Function[{r}, (k*Sqrt[Z[\[Phi][r]]]*Derivative[1][a][r]*
(2*S[r]*\[ScriptCapitalD][r]*\[Zeta][r]^2*Derivative[1][V][\[Phi][r]] -
S[r]*\[ScriptCapitalD][r]*Derivative[1][a][r]^2*
Derivative[1][Z][\[Phi][r]] - 4*n*\[Eta]*f[r]*S[r]^2*Z[\[Phi][r]]*
Derivative[1][a][r]^2*Derivative[1][S][r]*Derivative[1][\[Phi]][r] +
4*\[Eta]*f[r]*Derivative[1][S][r]*(2*(k^2*(1 - 2*n) + K*(-1 + n)*n)*
\[Zeta][r]^2 + n^2*Derivative[1][S][r]*
(-(S[r]*Derivative[1][f][r]) + 2*f[r]*Derivative[1][S][r]))*
Derivative[1][\[Phi]][r] + 4*\[Eta]^2*f[r]*S[r]^2*
(S[r]*Derivative[1][f][r] - 2*f[r]*Derivative[1][S][r])*
Derivative[1][\[Phi]][r]^3 - (\[ScriptCapitalD][r]*
Derivative[1][Z][\[Phi][r]]*(\[ScriptCapitalD][r] +
2*\[Eta]*f[r]*S[r]^2*Derivative[1][\[Phi]][r]^2))/
(S[r]*Z[\[Phi][r]])))/(Sqrt[2]*Sqrt[\[Eta]]*\[ScriptCapitalD][r]^2*
\[Zeta][r])], Subscript[W, 1, 0] ->
Function[{r}, k^2/S[r]^2 + (2*n^2*f[r]*S[r]^2*Z[\[Phi][r]]^2*
Derivative[1][a][r]^4*Derivative[1][S][r]^2)/(\[ScriptCapitalD][r]^2*
\[Zeta][r]^2) + (2*n*f[r]*S[r]*Derivative[1][a][r]^2*
Derivative[1][S][r]*Derivative[1][Z][\[Phi][r]]*
Derivative[1][\[Phi]][r])/(\[ScriptCapitalD][r]*\[Zeta][r]^2) +
(3*f[r]*Derivative[1][Z][\[Phi][r]]^2*Derivative[1][\[Phi]][r]^2)/
(4*Z[\[Phi][r]]^2*\[Zeta][r]^2) -
((-1 + n)*(n*Derivative[1][f][r]*Derivative[1][S][r] -
\[Eta]*f[r]*S[r]*Derivative[1][\[Phi]][r]^2))/(n*S[r]*\[Zeta][r]^2) +
(Z[\[Phi][r]]*Derivative[1][a][r]^2*(4*k^4*\[Zeta][r]^4 -
n^2*Derivative[1][S][r]^2*(S[r]*Derivative[1][f][r] -
2*f[r]*Derivative[1][S][r])*(S[r]*Derivative[1][f][r] -
2*(-1 + n)*f[r]*Derivative[1][S][r]) + 4*f[r]*\[Zeta][r]^2*
(n*(-(K*(-1 + n)*n) + k^2*(-3 + 2*n))*Derivative[1][S][r]^2 +
k^2*\[Eta]*S[r]^2*Derivative[1][\[Phi]][r]^2)))/
(\[ScriptCapitalD][r]^2*\[Zeta][r]^2) +
((Derivative[1][a][r]^2*Derivative[1][Z][\[Phi][r]]^2)/
(8*\[Eta]*\[Zeta][r]^2) + Derivative[1][Z][\[Phi][r]]*
(-1/4*Derivative[1][V][\[Phi][r]]/\[Eta] +
((-1 + n)*f[r]*Derivative[1][S][r]*Derivative[1][\[Phi]][r])/
(S[r]*\[Zeta][r]^2)) - (f[r]*Derivative[1][\[Phi]][r]^2*
Derivative[2][Z][\[Phi][r]])/(2*\[Zeta][r]^2))/Z[\[Phi][r]]],
Subscript[W, 1 -> 2, 0] -> Function[{r},
-((Sqrt[2]*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*Sqrt[Z[\[Phi][r]]]*
Derivative[1][a][r]*((4*\[Zeta][r]^2*(k^4*\[Zeta][r]^2 +
n*(k^2*(-2 + n) - K*(-1 + n)*n)*f[r]*Derivative[1][S][r]^2))/
S[r] + (n*f[r]*Derivative[1][S][r]*(2*n*Z[\[Phi][r]]*
Derivative[1][f][r]*Derivative[1][S][r]^2 + \[ScriptCapitalD][r]*
Derivative[1][Z][\[Phi][r]]*Derivative[1][\[Phi]][r]))/
Z[\[Phi][r]] + S[r]*(n^2*(2*f[r]*Z[\[Phi][r]]*Derivative[1][a][r]^
2 - Derivative[1][f][r]^2)*Derivative[1][S][r]^2 +
4*k^2*\[Eta]*f[r]*\[Zeta][r]^2*Derivative[1][\[Phi]][r]^2)))/
(Sqrt[n]*\[ScriptCapitalD][r]^2*\[Zeta][r]))],
Subscript[W, 2 -> 0, 0] -> Function[{r},
-((k*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*(\[ScriptCapitalD][r]*
(2*\[Zeta][r]^2*Derivative[1][V][\[Phi][r]] - Derivative[1][a][r]^2*
Derivative[1][Z][\[Phi][r]]) +
(4*\[Eta]*f[r]*Derivative[1][\[Phi]][r]*
(-(n*Derivative[1][S][r]*(2*(k^2 + K - K*n)*\[Zeta][r]^2 +
S[r]^2*Z[\[Phi][r]]*Derivative[1][a][r]^2 +
S[r]*Derivative[1][f][r]*Derivative[1][S][r] -
2*f[r]*Derivative[1][S][r]^2)) + \[Eta]*S[r]^2*
(S[r]*Derivative[1][f][r] - 2*f[r]*Derivative[1][S][r])*
Derivative[1][\[Phi]][r]^2))/S[r]))/(Sqrt[n]*Sqrt[\[Eta]]*
\[ScriptCapitalD][r]^2))], Subscript[W, 2 -> 1, 0] ->
Function[{r}, -((Sqrt[2]*Sqrt[-1 + n]*Sqrt[k^2 - K*n]*Sqrt[Z[\[Phi][r]]]*
Derivative[1][a][r]*((4*\[Zeta][r]^2*(k^4*\[Zeta][r]^2 +
n*(k^2*(-2 + n) - K*(-1 + n)*n)*f[r]*Derivative[1][S][r]^2))/
S[r] + (n*f[r]*Derivative[1][S][r]*(2*n*Z[\[Phi][r]]*
Derivative[1][f][r]*Derivative[1][S][r]^2 + \[ScriptCapitalD][r]*
Derivative[1][Z][\[Phi][r]]*Derivative[1][\[Phi]][r]))/
Z[\[Phi][r]] + S[r]*(n^2*(2*f[r]*Z[\[Phi][r]]*Derivative[1][a][r]^
2 - Derivative[1][f][r]^2)*Derivative[1][S][r]^2 +
4*k^2*\[Eta]*f[r]*\[Zeta][r]^2*Derivative[1][\[Phi]][r]^2)))/
(Sqrt[n]*\[ScriptCapitalD][r]^2*\[Zeta][r]))],
Subscript[W, 2, 0] -> Function[{r}, k^2/S[r]^2 +
((-1 + n)*(4*n*(k^2 - K*n)*f[r]*Z[\[Phi][r]]*Derivative[1][a][r]^2*
Derivative[1][S][r]^2 + (2*(-4*k^4*K*n*\[Zeta][r]^4 -
n^2*Derivative[1][S][r]^2*(-(S[r]*Derivative[1][f][r]) +
2*f[r]*Derivative[1][S][r])*((-2*k^2 + K*n)*S[r]*
Derivative[1][f][r] - 2*(k^2*(-2 + n) - K*(-1 + n)*n)*f[r]*
Derivative[1][S][r]) + 4*\[Zeta][r]^2*
(n*Derivative[1][S][r]*(-(k^4*S[r]*Derivative[1][f][r]) +
(k^4 - k^2*K*(-2 + n)*n + K^2*(-1 + n)*n^2)*f[r]*
Derivative[1][S][r]) + k^2*(k^2 - K*n)*\[Eta]*f[r]*S[r]^2*
Derivative[1][\[Phi]][r]^2)))/(n*S[r]^2)))/
\[ScriptCapitalD][r]^2], \[ScriptCapitalD] ->
Function[{r}, 2*k^2*\[Zeta][r]^2 +
n*(S[r]*Derivative[1][f][r]*Derivative[1][S][r] -
2*f[r]*Derivative[1][S][r]^2)]},
{Derivative[2][\[Phi]][r] ->
(-((n*Derivative[1][S][r])/S[r]) + Derivative[1][\[Zeta]][r]/\[Zeta][r])*
Derivative[1][\[Phi]][r] -
(-2*\[Zeta][r]^2*Derivative[1][V][\[Phi][r]] + Derivative[1][a][r]^2*
Derivative[1][Z][\[Phi][r]] + 4*\[Eta]*Derivative[1][f][r]*
Derivative[1][\[Phi]][r])/(4*\[Eta]*f[r]),
Derivative[2][a][r] -> Derivative[1][a][r]*
(-((n*Derivative[1][S][r])/S[r]) + Derivative[1][\[Zeta]][r]/\[Zeta][r] -
(Derivative[1][Z][\[Phi][r]]*Derivative[1][\[Phi]][r])/Z[\[Phi][r]]),
Derivative[2][S][r] -> (Derivative[1][S][r]*Derivative[1][\[Zeta]][r])/
\[Zeta][r] - (\[Eta]*S[r]*Derivative[1][\[Phi]][r]^2)/n,
\[CapitalLambda] -> (2*(K*(-1 + n)*n - S[r]^2*V[\[Phi][r]])*\[Zeta][r]^2 -
2*n*S[r]*Derivative[1][f][r]*Derivative[1][S][r] -
2*(-1 + n)*n*f[r]*Derivative[1][S][r]^2 +
S[r]^2*(-(Z[\[Phi][r]]*Derivative[1][a][r]^2) +
2*\[Eta]*f[r]*Derivative[1][\[Phi]][r]^2))/(2*S[r]^2*\[Zeta][r]^2),
Derivative[2][f][r] -> Z[\[Phi][r]]*Derivative[1][a][r]^2 -
((-2 + n)*Derivative[1][f][r]*Derivative[1][S][r])/S[r] -
(2*(-1 + n)*(K*\[Zeta][r]^2 - f[r]*Derivative[1][S][r]^2))/S[r]^2 +
(Derivative[1][f][r]*Derivative[1][\[Zeta]][r])/\[Zeta][r] -
(2*\[Eta]*f[r]*Derivative[1][\[Phi]][r]^2)/n}}