-
Notifications
You must be signed in to change notification settings - Fork 8
/
run_finetune_clone.py
658 lines (559 loc) · 28.7 KB
/
run_finetune_clone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
import json
import multiprocessing
cpu_cont = multiprocessing.cpu_count()
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, AutoTokenizer, AutoConfig)
from modeling import TracedForEncoder
logger = logging.getLogger(__name__)
class Model(torch.nn.Module):
def __init__(self, encoder, config, tokenizer, args):
super(Model, self).__init__()
self.encoder = encoder
self.config = config
self.tokenizer = tokenizer
self.args = args
def forward(self, input_ids=None, p_input_ids=None, n_input_ids=None, labels=None):
bs, _ = input_ids.size()
input_ids = torch.cat((input_ids, p_input_ids, n_input_ids), 0)
outputs = self.encoder(input_ids, attention_mask=input_ids.ne(1)) # Note that the pad token id is 1 in RobertaTokenizer, this is different from the CONCORD main model
outputs = outputs.split(bs, 0)
prob_1 = (outputs[0] * outputs[1]).sum(-1)
prob_2 = (outputs[0] * outputs[2]).sum(-1)
temp = torch.cat((outputs[0], outputs[1]), 0)
temp_labels = torch.cat((labels, labels), 0)
prob_3 = torch.mm(outputs[0], temp.t())
mask = labels[:, None] == temp_labels[None, :]
prob_3 = prob_3 * (1 - mask.float()) - 1e9 * mask.float()
prob = torch.softmax(torch.cat((prob_1[:, None], prob_2[:, None], prob_3), -1), -1)
loss = torch.log(prob[:, 0] + 1e-10)
loss = -loss.mean()
return loss, outputs[0]
class InputFeatures(object):
"""A single training/test features for a example."""
def __init__(self,
input_tokens,
input_ids,
index,
label,
):
self.input_tokens = input_tokens
self.input_ids = input_ids
self.index=index
self.label=label
def convert_examples_to_features(js,tokenizer,args):
#source
code=' '.join(js['code'].split())
code_tokens=tokenizer.tokenize(code)[:args.block_size-2]
source_tokens = [tokenizer.cls_token] + code_tokens + [tokenizer.sep_token]
source_ids = tokenizer.convert_tokens_to_ids(source_tokens)
padding_length = args.block_size - len(source_ids)
source_ids += [tokenizer.pad_token_id] * padding_length
return InputFeatures(source_tokens, source_ids, js['index'], int(js['label']))
class TextDataset(Dataset):
def __init__(self, tokenizer, args, file_path=None):
self.examples = []
data=[]
with open(file_path) as f:
for line in f:
line=line.strip()
js=json.loads(line)
data.append(js)
for js in data:
self.examples.append(convert_examples_to_features(js,tokenizer,args))
if 'train' in file_path:
for idx, example in enumerate(self.examples[:3]):
logger.info("*** Example ***")
logger.info("idx: {}".format(idx))
logger.info("label: {}".format(example.label))
logger.info("input_tokens: {}".format([x.replace('\u0120','_') for x in example.input_tokens]))
logger.info("input_ids: {}".format(' '.join(map(str, example.input_ids))))
self.label_examples={}
for e in self.examples:
if e.label not in self.label_examples:
self.label_examples[e.label]=[]
self.label_examples[e.label].append(e)
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
label=self.examples[i].label
index=self.examples[i].index
labels=list(self.label_examples)
labels.remove(label)
while True:
shuffle_example=random.sample(self.label_examples[label],1)[0]
if shuffle_example.index!=index:
p_example=shuffle_example
break
n_example=random.sample(self.label_examples[random.sample(labels,1)[0]],1)[0]
return (torch.tensor(self.examples[i].input_ids),torch.tensor(p_example.input_ids),
torch.tensor(n_example.input_ids),torch.tensor(label))
def set_seed(seed=42):
random.seed(seed)
os.environ['PYHTONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def train(args, train_dataset, model, tokenizer):
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler,
batch_size=args.train_batch_size, num_workers=4, pin_memory=True)
train_steps = args.num_train_epochs * len(train_dataloader)
warmup_steps = int(args.warmup_ratio * train_steps) if args.warmup_ratio is not None else 0
args.logging_steps = len(train_dataloader)
model.to(args.device)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=train_steps)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
if os.path.exists(scheduler_last):
scheduler.load_state_dict(torch.load(scheduler_last))
if os.path.exists(optimizer_last):
optimizer.load_state_dict(torch.load(optimizer_last))
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", train_steps)
global_step = args.start_step
tr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0
best_acc=0.0
# model.resize_token_embeddings(len(tokenizer))
model.zero_grad()
for idx in range(args.start_epoch, int(args.num_train_epochs)):
bar = train_dataloader
tr_num = 0
train_loss = 0
for step, batch in enumerate(bar):
inputs = batch[0].to(args.device)
p_inputs = batch[1].to(args.device)
n_inputs = batch[2].to(args.device)
labels = batch[3].to(args.device)
model.train()
loss,vec = model(inputs,p_inputs,n_inputs,labels)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
tr_num+=1
train_loss+=loss.item()
if avg_loss==0:
avg_loss=tr_loss
avg_loss=round(train_loss/tr_num,5)
if (step+1)% 100==0:
logger.info("epoch {} step {} loss {}".format(idx,step+1,avg_loss))
#bar.set_description("epoch {} loss {}".format(idx,avg_loss))
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logging_loss = tr_loss
tr_nb=global_step
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
results = evaluate(args, model, tokenizer, eval_when_training=True)
for key, value in results.items():
logger.info(" %s = %s", key, round(value,4))
# Save model checkpoint
tr_num = 0
train_loss = 0
if results['eval_map']>best_acc:
best_acc=results['eval_map']
logger.info(" "+"*"*20)
logger.info(" Best map:%s",round(best_acc,4))
logger.info(" "+"*"*20)
checkpoint_prefix = 'checkpoint-best-map'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model,'module') else model
output_dir = os.path.join(output_dir, '{}'.format('model.bin'))
torch.save(model_to_save.state_dict(), output_dir)
logger.info("Saving model checkpoint to %s", output_dir)
eval_dataset=None
def evaluate(args, model, tokenizer,eval_when_training=False):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
global eval_dataset
if eval_dataset is None:
eval_dataset = TextDataset(tokenizer, args,args.eval_data_file)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
# multi-gpu evaluate
if args.n_gpu > 1 and eval_when_training is False:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
vecs=[]
labels=[]
for batch in eval_dataloader:
inputs = batch[0].to(args.device)
p_inputs = batch[1].to(args.device)
n_inputs = batch[2].to(args.device)
label = batch[3].to(args.device)
with torch.no_grad():
lm_loss,vec = model(inputs, p_inputs, n_inputs, label)
eval_loss += lm_loss.mean().item()
vecs.append(vec.cpu().numpy())
labels.append(label.cpu().numpy())
nb_eval_steps += 1
vecs=np.concatenate(vecs,0)
labels=np.concatenate(labels,0)
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.tensor(eval_loss)
scores=np.matmul(vecs,vecs.T)
dic={}
for i in range(scores.shape[0]):
scores[i,i]=-1000000
if int(labels[i]) not in dic:
dic[int(labels[i])]=-1
dic[int(labels[i])]+=1
sort_ids=np.argsort(scores, axis=-1, kind='quicksort', order=None)[:,::-1]
MAP=[]
for i in range(scores.shape[0]):
cont=0
label=int(labels[i])
Avep = []
for j in range(dic[label]):
index=sort_ids[i,j]
if int(labels[index])==label:
Avep.append((len(Avep)+1)/(j+1))
MAP.append(sum(Avep)/dic[label])
result = {
"eval_loss": float(perplexity),
"eval_map":float(np.mean(MAP))
}
return result
def test_codenet(args, model, tokenizer):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_dataset = TextDataset(tokenizer, args,args.test_data_file)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running Test *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
vecs=[]
labels=[]
for batch in eval_dataloader:
inputs = batch[0].to(args.device)
p_inputs = batch[1].to(args.device)
n_inputs = batch[2].to(args.device)
label = batch[3].to(args.device)
with torch.no_grad():
lm_loss,vec = model(inputs, p_inputs, n_inputs, label)
eval_loss += lm_loss.mean().item()
vecs.append(vec.cpu().numpy())
labels.append(label.cpu().numpy())
nb_eval_steps += 1
vecs=np.concatenate(vecs,0)
labels=np.concatenate(labels,0)
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.tensor(eval_loss)
scores=np.matmul(vecs,vecs.T)
dic={}
for i in range(scores.shape[0]):
scores[i,i]=-1000000
if int(labels[i]) not in dic:
dic[int(labels[i])]=-1
dic[int(labels[i])]+=1
sort_ids=np.argsort(scores, axis=-1, kind='quicksort', order=None)[:,::-1]
MAP=[]
for i in range(scores.shape[0]):
cont=0
label=int(labels[i])
Avep = []
for j in range(dic[label]):
index=sort_ids[i,j]
if int(labels[index])==label:
Avep.append((len(Avep)+1)/(j+1))
MAP.append(sum(Avep)/dic[label])
result = {
"test_loss": float(perplexity),
"test_map":float(np.mean(MAP))
}
return result
def test(args, model, tokenizer):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_dataset = TextDataset(tokenizer, args,args.test_data_file)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running Test *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
vecs=[]
labels=[]
for batch in eval_dataloader:
inputs = batch[0].to(args.device)
p_inputs = batch[1].to(args.device)
n_inputs = batch[2].to(args.device)
label = batch[3].to(args.device)
with torch.no_grad():
lm_loss,vec = model(inputs,p_inputs,n_inputs,label)
eval_loss += lm_loss.mean().item()
vecs.append(vec.cpu().numpy())
labels.append(label.cpu().numpy())
nb_eval_steps += 1
vecs=np.concatenate(vecs,0)
labels=np.concatenate(labels,0)
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.tensor(eval_loss)
scores=np.matmul(vecs,vecs.T)
for i in range(scores.shape[0]):
scores[i,i]=-1000000
sort_ids=np.argsort(scores, axis=-1, kind='quicksort', order=None)[:,::-1]
indexs=[]
for example in eval_dataset.examples:
indexs.append(example.index)
with open(os.path.join(args.output_dir,"predictions.jsonl"),'w') as f:
for index,sort_id in zip(indexs,sort_ids):
js={}
js['index']=index
js['answers']=[]
for idx in sort_id[:499]:
js['answers'].append(indexs[int(idx)])
f.write(json.dumps(js)+'\n')
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--task", default="poj104", type=str, choices=["poj104", "codenet"],
help="The input training data file (a text file).")
parser.add_argument("--train_data_file", default=None, type=str,
help="The input training data file (a text file).")
parser.add_argument("--eval_data_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--test_data_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--model_name_or_path", default=None, type=str,
help="The model checkpoint for weights initialization.")
parser.add_argument("--config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--cache_dir", default="", type=str,
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
parser.add_argument("--block_size", default=-1, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Run evaluation during training at each logging step.")
parser.add_argument("--train_batch_size", default=None, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--eval_batch_size", default=None, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=8e-6, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument('--save_total_limit', type=int, default=None,
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--num_train_epochs', type=int, default=10,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--warmup_ratio', type=float, default=0,
help="warm up ratio")
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
args.device = device
logger.info("device: %s, n_gpu: %s", device, args.n_gpu)
args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu
args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args.seed)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
args.start_epoch = 0
args.start_step = 0
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
args.config_name = os.path.join(checkpoint_last, 'config.json')
idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
with open(idx_file, encoding='utf-8') as idxf:
args.start_epoch = int(idxf.readlines()[0].strip()) + 1
step_file = os.path.join(checkpoint_last, 'step_file.txt')
if os.path.exists(step_file):
with open(step_file, encoding='utf-8') as stepf:
args.start_step = int(stepf.readlines()[0].strip())
logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))
# build model
config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer_kwargs = {
"use_fast": False,
"config": config,
"do_lower_case": False,
"bos_token": "<s>",
"eos_token": "</s>",
}
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, **tokenizer_kwargs)
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
"and load it from here, using --tokenizer_name"
)
model = TracedForEncoder.from_pretrained(args.model_name_or_path, config=config, cache_dir=args.cache_dir)
model = Model(model, config, tokenizer, args)
logger.info("Training/evaluation parameters %s", args)
model.to(args.device)
if args.local_rank == 0:
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
train_dataset = TextDataset(tokenizer, args,args.train_data_file)
if args.local_rank == 0:
torch.distributed.barrier()
train(args, train_dataset, model, tokenizer)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoint_prefix = 'checkpoint-best-map/model.bin'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
model.load_state_dict(torch.load(output_dir),strict=True)
model.to(args.device)
result=evaluate(args, model, tokenizer)
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key],4)))
if args.do_test and args.local_rank in [-1, 0]:
checkpoint_prefix = 'checkpoint-best-map/model.bin'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
model.load_state_dict(torch.load(output_dir),strict=True)
model.to(args.device)
if args.task == "poj104":
test(args, model, tokenizer)
elif args.task == "codenet":
result = test_codenet(args, model, tokenizer)
logger.info("***** Test results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key],4)))
return results
if __name__ == "__main__":
main()