Skip to content

Latest commit

 

History

History
99 lines (70 loc) · 2.64 KB

File metadata and controls

99 lines (70 loc) · 2.64 KB
comments difficulty edit_url
true
Easy

中文文档

Description

Given an array of functions [f1, f2, f3, ..., fn], return a new function fn that is the function composition of the array of functions.

The function composition of [f(x), g(x), h(x)] is fn(x) = f(g(h(x))).

The function composition of an empty list of functions is the identity function f(x) = x.

You may assume each function in the array accepts one integer as input and returns one integer as output.

 

Example 1:

Input: functions = [x => x + 1, x => x * x, x => 2 * x], x = 4
Output: 65
Explanation:
Evaluating from right to left ...
Starting with x = 4.
2 * (4) = 8
(8) * (8) = 64
(64) + 1 = 65

Example 2:

Input: functions = [x => 10 * x, x => 10 * x, x => 10 * x], x = 1
Output: 1000
Explanation:
Evaluating from right to left ...
10 * (1) = 10
10 * (10) = 100
10 * (100) = 1000

Example 3:

Input: functions = [], x = 42
Output: 42
Explanation:
The composition of zero functions is the identity function

 

Constraints:

  • -1000 <= x <= 1000
  • 0 <= functions.length <= 1000
  • all functions accept and return a single integer

Solutions

Solution 1

TypeScript

type F = (x: number) => number;

function compose(functions: F[]): F {
    return function (x) {
        return functions.reduceRight((acc, fn) => fn(acc), x);
    };
}

/**
 * const fn = compose([x => x + 1, x => 2 * x])
 * fn(4) // 9
 */