-
Notifications
You must be signed in to change notification settings - Fork 29
/
BookParse.py
121 lines (106 loc) · 3.64 KB
/
BookParse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import PyPDF2
from transformers import AutoTokenizer
import json
import requests
import re
HOST = 'localhost:5000'
URI = f'http://{HOST}/api/v1/chat'
tokenizer = AutoTokenizer.from_pretrained("TheBloke/guanaco-13B-GPTQ")
history = {'internal': [], 'visible': []}
command = "You are an API that converts bodies of text into a single question and answer into a JSON format. Each JSON " \
"contains a single question with a single answer. Only respond with the JSON and no additional text. \n"
def run(user_input, history):
request = {
'user_input': user_input,
'history': history,
'mode': 'instruct', # Valid options: 'chat', 'chat-instruct', 'instruct'
'character': 'Example',
'instruction_template': 'Vicuna-v1.1',
'your_name': 'You',
'regenerate': False,
'_continue': False,
'stop_at_newline': False,
'chat_prompt_size': 2048,
'chat_generation_attempts': 1,
'chat-instruct_command': '',
'max_new_tokens': 500,
'do_sample': True,
'temperature': 0.7,
'top_p': 0.1,
'typical_p': 1,
'epsilon_cutoff': 0, # In units of 1e-4
'eta_cutoff': 0, # In units of 1e-4
'tfs': 1,
'top_a': 0,
'repetition_penalty': 1.18,
'top_k': 40,
'min_length': 0,
'no_repeat_ngram_size': 0,
'num_beams': 1,
'penalty_alpha': 0,
'length_penalty': 1,
'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5,
'mirostat_eta': 0.1,
'seed': -1,
'add_bos_token': True,
'truncation_length': 2048,
'ban_eos_token': False,
'skip_special_tokens': True,
'stopping_strings': []
}
response = requests.post(URI, json=request)
result = response.json()['results'][0]['history']
return result['visible'][-1][1]
def extract_text_from_pdf(file_path):
pdf_file_obj = open(file_path, 'rb')
pdf_reader = PyPDF2.PdfReader(pdf_file_obj)
text = ''
for page_num in range(len(pdf_reader.pages)):
page_obj = pdf_reader.pages[page_num]
text += page_obj.extract_text()
pdf_file_obj.close()
return text
def tokenize(text):
enc = tokenizer.encode(text)
return enc
def chunks(lst, n):
for i in range(0, len(lst), n):
yield lst[i:i + n]
def is_json(data):
try:
json.loads(data)
return True
except ValueError:
return False
def submit_to_api(chunk, retries=3):
for i in range(retries):
try:
response = run(command + chunk.strip(), history)
# Extract JSON string from between back-ticks
if is_json(response):
print(response)
return json.loads(response)
else:
match = re.search(r'`(.*?)`', response, re.S)
if match and is_json(match.group(1)):
print(f"Attempt {i + 1} failed. Retrying...")
return json.loads(match.group(1)) # assuming you want to return the JSON data
else:
print(f"Request failed: {e}")
except requests.exceptions.RequestException as e:
continue
print("Max retries exceeded. Skipping this chunk.")
return None
text = extract_text_from_pdf('D\\20000-Leagues-Under-the-Sea.pdf')
tokens = tokenize(text)
token_chunks = list(chunks(tokens, 256))
responses = []
for chunk in token_chunks:
response = submit_to_api(tokenizer.decode(chunk))
if response is not None:
responses.append(response)
# Write responses to a JSON file
with open('responses.json', 'w') as f:
json.dump(responses, f)