DESeq2 is a popular R package used for analyzing count data from RNA sequencing (RNA-seq) experiments. It is designed to perform differential gene expression analysis, helping researchers identify genes that are differentially expressed across different conditions.
In this tutorial, we will cover the following topics:
- Installation and loading of DESeq2
- Input data preparation
- Running the DESeq2 pipeline
- Exploring the results
- Visualization
First, we need to install and load the DESeq2 package. DESeq2 is
available from Bioconductor, so we use BiocManager
to install it.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("DESeq2")
Now, load the DESeq2 package.
library(DESeq2)
## Warning: package 'DESeq2' was built under R version 4.3.3
## Loading required package: S4Vectors
## Warning: package 'S4Vectors' was built under R version 4.3.2
## Loading required package: stats4
## Loading required package: BiocGenerics
## Warning: package 'BiocGenerics' was built under R version 4.3.1
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, aperm, append, as.data.frame, basename, cbind,
## colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
## get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
## match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
## Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
## table, tapply, union, unique, unsplit, which.max, which.min
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:utils':
##
## findMatches
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
## Loading required package: IRanges
## Warning: package 'IRanges' was built under R version 4.3.1
## Loading required package: GenomicRanges
## Warning: package 'GenomicRanges' was built under R version 4.3.1
## Loading required package: GenomeInfoDb
## Warning: package 'GenomeInfoDb' was built under R version 4.3.3
## Loading required package: SummarizedExperiment
## Warning: package 'SummarizedExperiment' was built under R version 4.3.1
## Loading required package: MatrixGenerics
## Warning: package 'MatrixGenerics' was built under R version 4.3.1
## Loading required package: matrixStats
## Warning: package 'matrixStats' was built under R version 4.3.2
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
## colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
## colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
## colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
## colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
## colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
## colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
## colWeightedMeans, colWeightedMedians, colWeightedSds,
## colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
## rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
## rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
## rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
## rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
## rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
## rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
## rowWeightedSds, rowWeightedVars
## Loading required package: Biobase
## Warning: package 'Biobase' was built under R version 4.3.1
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
## rowMedians
## The following objects are masked from 'package:matrixStats':
##
## anyMissing, rowMedians
DESeq2 requires a count matrix and sample information. The count matrix should contain raw counts of reads mapped to each gene for each sample. Sample information should include metadata about each sample, such as condition or treatment.
For this tutorial, we will use an example dataset provided by the airway package. Note that you may get installation messages similar to those below.
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
## Warning: package 'BiocManager' was built under R version 4.3.2
## Bioconductor version '3.18' is out-of-date; the current release version '3.19'
## is available with R version '4.4'; see https://bioconductor.org/install
BiocManager::install("airway")
## Bioconductor version 3.18 (BiocManager 1.30.23), R 4.3.0 (2023-04-21)
## Warning: package(s) not installed when version(s) same as or greater than current; use
## `force = TRUE` to re-install: 'airway'
## Old packages: 'hardhat', 'reticulate'
library(airway)
data(airway)
airway <- as(airway, "RangedSummarizedExperiment")
Inspect the count data and sample information.
head(assay(airway))
## SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516
## ENSG00000000003 679 448 873 408 1138
## ENSG00000000005 0 0 0 0 0
## ENSG00000000419 467 515 621 365 587
## ENSG00000000457 260 211 263 164 245
## ENSG00000000460 60 55 40 35 78
## ENSG00000000938 0 0 2 0 1
## SRR1039517 SRR1039520 SRR1039521
## ENSG00000000003 1047 770 572
## ENSG00000000005 0 0 0
## ENSG00000000419 799 417 508
## ENSG00000000457 331 233 229
## ENSG00000000460 63 76 60
## ENSG00000000938 0 0 0
colData(airway)
## DataFrame with 8 rows and 9 columns
## SampleName cell dex albut Run avgLength
## <factor> <factor> <factor> <factor> <factor> <integer>
## SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126
## SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126
## SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126
## SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87
## SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120
## SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126
## SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101
## SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98
## Experiment Sample BioSample
## <factor> <factor> <factor>
## SRR1039508 SRX384345 SRS508568 SAMN02422669
## SRR1039509 SRX384346 SRS508567 SAMN02422675
## SRR1039512 SRX384349 SRS508571 SAMN02422678
## SRR1039513 SRX384350 SRS508572 SAMN02422670
## SRR1039516 SRX384353 SRS508575 SAMN02422682
## SRR1039517 SRX384354 SRS508576 SAMN02422673
## SRR1039520 SRX384357 SRS508579 SAMN02422683
## SRR1039521 SRX384358 SRS508580 SAMN02422677
The first step is to create a DESeqDataSet
object from the count
matrix and sample information. Note that you may see messages similar to
those below.
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("DESeq2")
## Bioconductor version 3.18 (BiocManager 1.30.23), R 4.3.0 (2023-04-21)
## Warning: package(s) not installed when version(s) same as or greater than current; use
## `force = TRUE` to re-install: 'DESeq2'
## Old packages: 'hardhat', 'reticulate'
library(DESeq2)
dds <- DESeqDataSet(airway, design = ~ cell + dex)
To speed up computation, we can pre-filter the dataset to remove rows with low counts. In this case we are removing those with counts of less than 1.
dds <- dds[rowSums(counts(dds)) > 1,]
Now, we run the DESeq function, which will perform the differential expression analysis.
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
We can extract the results for a specific contrast using the results
function. For example, let’s extract the results for the dex treatment
effect. “trt” indicates the ones that the dex treatment was applied to,
while “untrt” indicates the ones that the dex treatment was not applied
to.
res <- results(dds, contrast = c("dex", "trt", "untrt"))
head(res)
## log2 fold change (MLE): dex trt vs untrt
## Wald test p-value: dex trt vs untrt
## DataFrame with 6 rows and 6 columns
## baseMean log2FoldChange lfcSE stat pvalue
## <numeric> <numeric> <numeric> <numeric> <numeric>
## ENSG00000000003 708.602170 -0.3812540 0.1006544 -3.787752 1.52016e-04
## ENSG00000000419 520.297901 0.2068126 0.1122186 1.842943 6.53373e-02
## ENSG00000000457 237.163037 0.0379204 0.1434447 0.264356 7.91506e-01
## ENSG00000000460 57.932633 -0.0881682 0.2871418 -0.307054 7.58802e-01
## ENSG00000000938 0.318098 -1.3782270 3.4998728 -0.393793 6.93734e-01
## ENSG00000000971 5817.352868 0.4264021 0.0883134 4.828284 1.37715e-06
## padj
## <numeric>
## ENSG00000000003 1.28121e-03
## ENSG00000000419 1.96208e-01
## ENSG00000000457 9.11196e-01
## ENSG00000000460 8.94633e-01
## ENSG00000000938 NA
## ENSG00000000971 1.81808e-05
To get a summary of the results, use the summary
function.
summary(res)
##
## out of 29391 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up) : 2607, 8.9%
## LFC < 0 (down) : 2218, 7.5%
## outliers [1] : 0, 0%
## low counts [2] : 11397, 39%
## (mean count < 5)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
An MA-plot shows the log fold changes attributable to a given variable over the mean of normalized counts.
plotMA(res, ylim = c(-5, 5))
We can plot a histogram of the p-values to check the distribution. Note that you can modify the breaks variable to change how many bins there are.
hist(res$pvalue, breaks = 50, col = "grey")
DESeq2 results can be used for downstream analysis such as Gene Ontology (GO) enrichment. In this case, we are using the clusterProfiler library to run GO enrichment analysis.
# Example of running GO enrichment analysis
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("clusterProfiler")
BiocManager::install("org.Hs.eg.db")
library(clusterProfiler)
library(org.Hs.eg.db)
gene_list <- rownames(res)[which(res$padj < 0.05)]
ego <- enrichGO(gene = gene_list, OrgDb = org.Hs.eg.db, keyType = "ENSEMBL", ont = "BP")
dotplot(ego)
We can visualize the distances between samples using a heatmap.
library(pheatmap)
vsd <- vst(dds, blind = FALSE)
sampleDists <- dist(t(assay(vsd)))
sampleDistMatrix <- as.matrix(sampleDists)
rownames(sampleDistMatrix) <- paste(vsd$cell, vsd$dex, sep = "-")
colnames(sampleDistMatrix) <- NULL
pheatmap(sampleDistMatrix, clustering_distance_rows = sampleDists, clustering_distance_cols = sampleDists)
Principal Component Analysis (PCA) can help visualize the overall effect of experimental covariates.
plotPCA(vsd, intgroup = c("cell", "dex"))
## using ntop=500 top features by variance
In this tutorial, we covered the basic workflow of DESeq2 for differential expression analysis of RNA-seq data. We went through data preparation, running the DESeq2 pipeline, exploring the results, and visualization. DESeq2 is a powerful tool for RNA-seq analysis, providing robust methods to identify differentially expressed genes.
For more detailed information and advanced usage, refer to the DESeq2 vignette.