-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
393 lines (316 loc) · 14.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# copy from act repo shamelessly.
import os
import pickle
from random import randint
from copy import deepcopy
import win32gui
import win32ui
import win32con
import numpy as np
import torch
import h5py
from torch.utils.data import TensorDataset, DataLoader
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from constants import SN
# 增大E键按下后的episode出现的概率
import IPython
e = IPython.embed
class EpisodicDataset(torch.utils.data.Dataset):
def __init__(self, episode_ids, dataset_dir, camera_names, norm_stats, chunk_size, samp_traj=True):
super(EpisodicDataset).__init__()
self.episode_ids = episode_ids
self.dataset_dir = dataset_dir
self.camera_names = camera_names
# 是否随机裁剪轨迹长度
# 对于test没用,因为这里是一个image -> actions的映射
# test需要的仅仅是 images -> actions
self.samp_traj = samp_traj
# 这里的norm是在整个task的数据集上计算的
# 在ckpt_dir/dataset_stats.pkl
self.norm_stats = norm_stats
self.chunk_size = chunk_size
def __len__(self):
return len(self.episode_ids)
def __getitem__(self, index):
sample_full_episode = not self.samp_traj
# TODO: make this configurable(是否随机选择episode)
# episode_id = self.episode_ids[index]
episode_id = np.random.choice(self.episode_ids)
dataset_path = os.path.join(self.dataset_dir, f'{episode_id}.hdf5')
with h5py.File(dataset_path, 'r') as root:
# is_sim = root.attrs['sim']
original_action_shape = root['/action'].shape # episode_len, action_dim
episode_len, action_dim = original_action_shape
# 从 /action 寻找第一个 E 不为 0 的位置
# TODO: add more keys of interest, make it a function?
e_begin = 0
for i in range(episode_len):
if root['/action'][i, SN['E']] != 0:
e_begin = i
break
if sample_full_episode:
start_ts = 0
else:
# TODO: make other keys more possible too
# TODO: make probability configurable
# 有概率直接短路到E,即开始战斗
if np.random.rand() < 0.1:
start_ts = randint(e_begin, episode_len - 1)
else:
start_ts = np.random.choice(episode_len)
# get observation at start_ts only
# Yaa changed status
obs_state = root['/obs/state'][start_ts]
image_dict = dict()
for cam_name in self.camera_names:
image_dict[cam_name] = root[f'/obs/images/{cam_name}'][start_ts]
# Hack trick, 实际机器人/窗口响应需要时间
# TODO: make this configurable
ts_offset = -1
# 只要chunk size内的action
s_idx = max(0, start_ts + ts_offset)
e_idx = min(start_ts + self.chunk_size + ts_offset, episode_len) # need offset too
action = root['/action'][s_idx:e_idx]
action_len = e_idx - s_idx
padded_action = np.zeros((self.chunk_size, action_dim), dtype=np.float32)
padded_action[:action_len] = action
is_pad = np.zeros(self.chunk_size, dtype=np.bool)
is_pad[action_len:] = 1
# new axis for different cameras
all_cam_images = []
for cam_name in self.camera_names:
all_cam_images.append(image_dict[cam_name])
all_cam_images = np.stack(all_cam_images, axis=0)
# construct observations
image_data = torch.from_numpy(all_cam_images)
# qpos_data = torch.from_numpy(qpos).float()
obs_state_data = torch.from_numpy(obs_state).float()
action_data = torch.from_numpy(padded_action).float()
is_pad = torch.from_numpy(is_pad).bool()
# channel last -> channel first
image_data = torch.einsum('k h w c -> k c h w', image_data)
# normalize image and change dtype to float
# 图像后面还会在policy中基于ImageNet数据集的均值和方差进行归一化
image_data = image_data / 255.0
# 只对action的最后两个维度进行norm
mouse_action = action_data[:, -2:]
# TODO: 设置两种norm方式
if True:
mouse_action = (mouse_action - self.norm_stats["mouse_action_min"]) / (self.norm_stats["mouse_action_max"] - self.norm_stats["mouse_action_min"])
# print(f'min mouse action: {torch.min(mouse_action, dim=0)}, max mouse action: {torch.max(mouse_action, dim=0)}')
else:
mouse_action = (mouse_action - self.norm_stats["mouse_action_mean"]) / self.norm_stats["mouse_action_std"]
# print(f'min mouse action: {torch.min(mouse_action, dim=0)}, max mouse action: {torch.max(mouse_action, dim=0)}')
action_data[:, -2:] = mouse_action
# 设置pad后的action为0
action_data[action_len:, :] = 0
return image_data, obs_state_data, action_data, is_pad
# 用于test的数据集
# one traj in.
# return image, action in each ts
class EpisodicDatasetTest(torch.utils.data.Dataset):
def __init__(self, episode_id, dataset_dir, camera_names, norm_stats, samp_traj=False):
super(EpisodicDatasetTest).__init__()
# only id !
self.episode_id = episode_id
self.dataset_dir = dataset_dir
self.camera_names = camera_names
self.norm_stats = norm_stats
self.samp_traj = samp_traj
f = h5py.File(os.path.join(self.dataset_dir, f'{self.episode_id}.hdf5'), 'r')
self.episode_len = f['/action'].shape[0]
self.hdf5_handle = f
if self.samp_traj:
self.start_ts = np.random.choice(self.episode_len)
self.episode_len = self.episode_len - self.start_ts
else:
self.start_ts = 0
preprocess = lambda action: (action - self.norm_stats['action_mean']) / self.norm_stats['action_std']
postprocess = lambda action: (action * self.norm_stats['action_std']) + self.norm_stats['action_mean']
self.preprocess = preprocess
self.postprocess = postprocess
def __len__(self):
return self.episode_len
def __getitem__(self, index):
ts = self.start_ts + index
# image, action
# 不要做预处理,只要跟原始捕获一致即可
image_dict = dict()
for cam_name in self.camera_names:
image_dict[cam_name] = self.hdf5_handle[f'/obs/images/{cam_name}'][ts]
all_cam_images = []
for cam_name in self.camera_names:
all_cam_images.append(image_dict[cam_name])
# stack 多了一个维度,k h w c
all_cam_images = np.stack(all_cam_images, axis=0)
image_data = torch.from_numpy(all_cam_images)
# image_data = torch.einsum('k h w c -> k c h w', image_data)
# image_data = image_data / 255.0
action = self.hdf5_handle['/action'][ts]
# action = self.preprocess(action)
return image_data, action
def get_norm_stats(dataset_dir, num_episodes):
# all_qpos_data = []
all_state_data = []
all_action_data = []
max_episode_len = 0
for episode_idx in range(num_episodes):
dataset_path = os.path.join(dataset_dir, f'{episode_idx}.hdf5')
with h5py.File(dataset_path, 'r') as root:
obs_state = root['/obs/state'][()]
action = root['/action'][()]
all_state_data.append(torch.from_numpy(obs_state))
all_action_data.append(torch.from_numpy(action))
max_episode_len = max(max_episode_len, action.shape[0])
# concat 所有 episode 的 state/action 到 [\sum_i episode_len, state/action_dim]
all_state_data = torch.cat(all_state_data, dim=0)
all_action_data = torch.cat(all_action_data, dim=0)
# keyboard state and action 不需要进行norm,全是0/1
# mouse state 不需要进行norm,全是0
mouse_action = all_action_data[:, -2:]
# 归一化,减去最小值,除以最大值
mouse_action_min = torch.min(mouse_action, dim=0).values
mouse_action_max = torch.max(mouse_action, dim=0).values
# 标准化,减去均值,除以标准差
mouse_action_mean = torch.mean(mouse_action, dim=0)
mouse_action_std = torch.std(mouse_action, dim=0)
stats = {
"mouse_action_min": mouse_action_min.numpy().squeeze(),
"mouse_action_max": mouse_action_max.numpy().squeeze(),
"mouse_action_mean": mouse_action_mean.numpy().squeeze(),
"mouse_action_std": mouse_action_std.numpy().squeeze(),
"max_episode_len": max_episode_len
}
return stats, max_episode_len
def load_data(dataset_dir, num_episodes, camera_names, chunk_size, batch_size_train, batch_size_val):
print(f'\nData from: {dataset_dir}\n')
# obtain train test split
# TODO: make this ratio configurable
# 居然是按示教轨迹来划分训练集和验证集的
# num_episodes = 28 # hack for only newer 30 episodes
# oid2nid = {i: i+20 for i in range(num_episodes)}
train_ratio = 0.8
shuffled_indices = np.random.permutation(num_episodes)
train_indices = shuffled_indices[:int(train_ratio * num_episodes)]
# TODO: make this configurable
train_indices = deepcopy(shuffled_indices)
val_indices = shuffled_indices[int(train_ratio * num_episodes):]
# train_indices = [oid2nid[i] for i in train_indices]
# val_indices = [oid2nid[i] for i in val_indices]
# obtain normalization stats & max_episode for qpos and action
# use max_episode to pad in dataloader
norm_stats, max_episode_len = get_norm_stats(dataset_dir, num_episodes)
# construct dataset and dataloader
train_dataset = EpisodicDataset(train_indices, dataset_dir, camera_names, norm_stats, chunk_size, True)
val_dataset = EpisodicDataset(val_indices, dataset_dir, camera_names, norm_stats, chunk_size, True)
# print(f'batch size train: {batch_size_train}, batch size val: {batch_size_val}')
train_dataloader = DataLoader(train_dataset, batch_size=batch_size_train,
shuffle=True, pin_memory=True, num_workers=1, prefetch_factor=1,)
# collate_fn=MyCollate(max_episode_len).collate_fn)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size_val,
shuffle=True, pin_memory=True, num_workers=1, prefetch_factor=1,)
# collate_fn=MyCollate(max_episode_len).collate_fn)
return train_dataloader, val_dataloader, norm_stats
def load_data_test(dataset_dir, ckpt_dir, episode_id, camera_names):
# 不进行训练集和验证集的划分
# norm_stats 从pkl文件中读取,训练时必然保存的
norm_stats = None
with open(os.path.join(ckpt_dir, 'dataset_stats.pkl'), 'rb') as f:
norm_stats = pickle.load(f)
if norm_stats is None:
raise ValueError('Cannot load dataset stats from dataset_stats.pkl')
test_dataset = EpisodicDatasetTest(episode_id, dataset_dir, camera_names, norm_stats)
return test_dataset, norm_stats
class MyCollate:
def __init__(self, max_episode_len):
self.max_len = max_episode_len
def collate_fn(self, batch):
# batch is [(image, state, action, is_pad), ...]
# image: [num_cams, C, H, W]
# state: [state_dim]
# action: [episode_len, action_dim]
# is_pad: [episode_len]
image, state, action, is_pad = zip(*batch)
# pad action and is_pad
action = pad_sequence(action, batch_first=True, padding_value=0)
is_pad = pad_sequence(is_pad, batch_first=True, padding_value=1)
return torch.stack(image), torch.stack(state), action, is_pad
### env utils
# IN Yaa, there is no sim env.
'''
def sample_box_pose():
x_range = [0.0, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
cube_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
cube_quat = np.array([1, 0, 0, 0])
return np.concatenate([cube_position, cube_quat])
def sample_insertion_pose():
# Peg
x_range = [0.1, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
peg_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
peg_quat = np.array([1, 0, 0, 0])
peg_pose = np.concatenate([peg_position, peg_quat])
# Socket
x_range = [-0.2, -0.1]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
socket_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
socket_quat = np.array([1, 0, 0, 0])
socket_pose = np.concatenate([socket_position, socket_quat])
return peg_pose, socket_pose
'''
### helper functions
def compute_dict_mean(epoch_dicts):
result = {k: None for k in epoch_dicts[0]}
num_items = len(epoch_dicts)
for k in result:
value_sum = 0
for epoch_dict in epoch_dicts:
value_sum += epoch_dict[k]
result[k] = value_sum / num_items
return result
def detach_dict(d):
new_d = dict()
for k, v in d.items():
new_d[k] = v.detach()
return new_d
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
# windows capture
def capture(hwnd):
# 获取窗口的设备上下文
hwndDC = win32gui.GetWindowDC(hwnd)
mfcDC = win32ui.CreateDCFromHandle(hwndDC)
saveDC = mfcDC.CreateCompatibleDC()
# 获取窗口的大小
left, top, right, bot = win32gui.GetClientRect(hwnd)
width = right - left
height = bot - top
# 创建一个位图来存储捕获内容
saveBitMap = win32ui.CreateBitmap()
saveBitMap.CreateCompatibleBitmap(mfcDC, width, height)
saveDC.SelectObject(saveBitMap)
# 使用BitBlt捕获窗口图像
result = saveDC.BitBlt((0, 0), (width, height), mfcDC, (0, 0), win32con.SRCCOPY)
# 将捕获的图像转换为numpy数组
bmpinfo = saveBitMap.GetInfo()
bmpstr = saveBitMap.GetBitmapBits(True)
imdata = np.frombuffer(bmpstr, dtype='uint8')
imdata.shape = (height, width, 4)
# 清理资源
win32gui.DeleteObject(saveBitMap.GetHandle())
saveDC.DeleteDC()
mfcDC.DeleteDC()
win32gui.ReleaseDC(hwnd, hwndDC)
# 返回numpy数组
return imdata
if __name__ == "__main__":
dts = EpisodicDatasetTest([0])