-
Notifications
You must be signed in to change notification settings - Fork 140
/
part_swap.py
244 lines (182 loc) · 9.99 KB
/
part_swap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import matplotlib
matplotlib.use('Agg')
import yaml
from argparse import ArgumentParser
from tqdm import tqdm
import sys
import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
from sync_batchnorm import DataParallelWithCallback
import torch.nn.functional as F
from modules.segmentation_module import SegmentationModule
from modules.reconstruction_module import ReconstructionModule
from logger import load_reconstruction_module, load_segmentation_module
from modules.util import AntiAliasInterpolation2d
from modules.dense_motion import DenseMotionNetwork
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
class PartSwapGenerator(ReconstructionModule):
def __init__(self, blend_scale=1, first_order_motion_model=False, **kwargs):
super(PartSwapGenerator, self).__init__(**kwargs)
if blend_scale == 1:
self.blend_downsample = lambda x: x
else:
self.blend_downsample = AntiAliasInterpolation2d(1, blend_scale)
if first_order_motion_model:
self.dense_motion_network = DenseMotionNetwork()
else:
self.dense_motion_network = None
def forward(self, source_image, target_image, seg_target, seg_source, blend_mask, use_source_segmentation=False):
# Encoding of source image
enc_source = self.first(source_image)
for i in range(len(self.down_blocks)):
enc_source = self.down_blocks[i](enc_source)
# Encoding of target image
enc_target = self.first(target_image)
for i in range(len(self.down_blocks)):
enc_target = self.down_blocks[i](enc_target)
output_dict = {}
# Compute flow field for source image
if self.dense_motion_network is None:
segment_motions = self.segment_motion(seg_target, seg_source)
segment_motions = segment_motions.permute(0, 1, 4, 2, 3)
mask = seg_target['segmentation'].unsqueeze(2)
deformation = (segment_motions * mask).sum(dim=1)
deformation = deformation.permute(0, 2, 3, 1)
else:
motion = self.dense_motion_network(source_image=source_image, seg_target=seg_target,
seg_source=seg_source)
deformation = motion['deformation']
# Deform source encoding according to the motion
enc_source = self.deform_input(enc_source, deformation)
if self.estimate_visibility:
if self.dense_motion_network is None:
visibility = seg_source['segmentation'][:, 1:].sum(dim=1, keepdim=True) * \
(1 - seg_target['segmentation'][:, 1:].sum(dim=1, keepdim=True).detach())
visibility = 1 - visibility
else:
visibility = motion['visibility']
if enc_source.shape[2] != visibility.shape[2] or enc_source.shape[3] != visibility.shape[3]:
visibility = F.interpolate(visibility, size=enc_source.shape[2:], mode='bilinear')
enc_source = enc_source * visibility
blend_mask = self.blend_downsample(blend_mask)
# If source segmentation is provided use it should be deformed before blending
if use_source_segmentation:
blend_mask = self.deform_input(blend_mask, deformation)
out = enc_target * (1 - blend_mask) + enc_source * blend_mask
out = self.bottleneck(out)
for i in range(len(self.up_blocks)):
out = self.up_blocks[i](out)
out = self.final(out)
out = F.sigmoid(out)
output_dict["prediction"] = out
return output_dict
def load_checkpoints(config, checkpoint, blend_scale=0.125, first_order_motion_model=False, cpu=False):
with open(config) as f:
config = yaml.load(f)
reconstruction_module = PartSwapGenerator(blend_scale=blend_scale,
first_order_motion_model=first_order_motion_model,
**config['model_params']['reconstruction_module_params'],
**config['model_params']['common_params'])
if not cpu:
reconstruction_module.cuda()
segmentation_module = SegmentationModule(**config['model_params']['segmentation_module_params'],
**config['model_params']['common_params'])
if not cpu:
segmentation_module.cuda()
if cpu:
checkpoint = torch.load(checkpoint, map_location=torch.device('cpu'))
else:
checkpoint = torch.load(checkpoint)
load_reconstruction_module(reconstruction_module, checkpoint)
load_segmentation_module(segmentation_module, checkpoint)
if not cpu:
reconstruction_module = DataParallelWithCallback(reconstruction_module)
segmentation_module = DataParallelWithCallback(segmentation_module)
reconstruction_module.eval()
segmentation_module.eval()
return reconstruction_module, segmentation_module
def load_face_parser(cpu=False):
from face_parsing.model import BiSeNet
face_parser = BiSeNet(n_classes=19)
if not cpu:
face_parser.cuda()
face_parser.load_state_dict(torch.load('face_parsing/cp/79999_iter.pth'))
else:
face_parser.load_state_dict(torch.load('face_parsing/cp/79999_iter.pth', map_location=torch.device('cpu')))
face_parser.eval()
mean = torch.Tensor(np.array([0.485, 0.456, 0.406], dtype=np.float32)).view(1, 3, 1, 1)
std = torch.Tensor(np.array([0.229, 0.224, 0.225], dtype=np.float32)).view(1, 3, 1, 1)
if not cpu:
face_parser.mean = mean.cuda()
face_parser.std = std.cuda()
else:
face_parser.mean = mean
face_parser.std = std
return face_parser
def make_video(swap_index, source_image, target_video, reconstruction_module, segmentation_module, face_parser=None,
hard=False, use_source_segmentation=False, cpu=False):
assert type(swap_index) == list
with torch.no_grad():
predictions = []
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
if not cpu:
source = source.cuda()
target = torch.tensor(np.array(target_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
seg_source = segmentation_module(source)
for frame_idx in tqdm(range(target.shape[2])):
target_frame = target[:, :, frame_idx]
if not cpu:
target_frame = target_frame.cuda()
seg_target = segmentation_module(target_frame)
# Computing blend mask
if face_parser is not None:
blend_mask = F.interpolate(source if use_source_segmentation else target_frame, size=(512, 512))
blend_mask = (blend_mask - face_parser.mean) / face_parser.std
blend_mask = torch.softmax(face_parser(blend_mask)[0], dim=1)
else:
blend_mask = seg_source['segmentation'] if use_source_segmentation else seg_target['segmentation']
blend_mask = blend_mask[:, swap_index].sum(dim=1, keepdim=True)
if hard:
blend_mask = (blend_mask > 0.5).type(blend_mask.type())
out = reconstruction_module(source, target_frame, seg_source=seg_source, seg_target=seg_target,
blend_mask=blend_mask, use_source_segmentation=use_source_segmentation)
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
return predictions
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", required=True, help="path to config")
parser.add_argument("--checkpoint", default='vox-cpk.pth.tar', help="path to checkpoint to restore")
parser.add_argument("--source_image", default='sup-mat/source.png', help="path to source image")
parser.add_argument("--target_video", default='sup-mat/source.png', help="path to target video")
parser.add_argument("--result_video", default='result.mp4', help="path to output")
parser.add_argument("--swap_index", default="1,2,5", type=lambda x: list(map(int, x.split(','))),
help='index of swaped parts')
parser.add_argument("--hard", action="store_true", help="use hard segmentation labels for blending")
parser.add_argument("--use_source_segmentation", action="store_true", help="use source segmentation for swaping")
parser.add_argument("--first_order_motion_model", action="store_true", help="use first order model for alignment")
parser.add_argument("--supervised", action="store_true",
help="use supervised segmentation labels for blending. Only for faces.")
parser.add_argument("--cpu", action="store_true", help="cpu mode")
opt = parser.parse_args()
source_image = imageio.imread(opt.source_image)
target_video = imageio.mimread(opt.target_video, memtest=False)
source_image = resize(source_image, (256, 256))[..., :3]
target_video = [resize(frame, (256, 256))[..., :3] for frame in target_video]
blend_scale = (256 / 4) / 512 if opt.supervised else 1
reconstruction_module, segmentation_module = load_checkpoints(opt.config, opt.checkpoint, blend_scale=blend_scale,
first_order_motion_model=opt.first_order_motion_model, cpu=opt.cpu)
if opt.supervised:
face_parser = load_face_parser(opt.cpu)
else:
face_parser = None
predictions = make_video(opt.swap_index, source_image, target_video, reconstruction_module, segmentation_module,
face_parser, hard=opt.hard, use_source_segmentation=opt.use_source_segmentation, cpu=opt.cpu)
# Read fps of the target video and save result with the same fps
reader = imageio.get_reader(opt.target_video)
fps = reader.get_meta_data()['fps']
reader.close()
imageio.mimsave(opt.result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)