forked from diviswen/PMP-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config_pcn.py
84 lines (71 loc) · 3.08 KB
/
config_pcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# -*- coding: utf-8 -*-
# @Author: XP
from easydict import EasyDict as edict
__C = edict()
cfg = __C
#
# Dataset Config
#
__C.DATASETS = edict()
__C.DATASETS.COMPLETION3D = edict()
__C.DATASETS.COMPLETION3D.CATEGORY_FILE_PATH = './datasets/Completion3D.json'
__C.DATASETS.COMPLETION3D.PARTIAL_POINTS_PATH = '/data/shapenet/%s/partial/%s/%s.h5'
__C.DATASETS.COMPLETION3D.COMPLETE_POINTS_PATH = '/data/shapenet/%s/gt/%s/%s.h5'
__C.DATASETS.SHAPENET = edict()
__C.DATASETS.SHAPENET.CATEGORY_FILE_PATH = './datasets/ShapeNet.json'
__C.DATASETS.SHAPENET.N_RENDERINGS = 8
__C.DATASETS.SHAPENET.N_POINTS = 16384
__C.DATASETS.SHAPENET.PARTIAL_POINTS_PATH = '/data/xp/data/PCN/%s/partial/%s/%s/%02d.pcd'
__C.DATASETS.SHAPENET.COMPLETE_POINTS_PATH = '/data/xp/data/PCN/%s/complete/%s/%s.pcd'
#
# Dataset
#
__C.DATASET = edict()
# Dataset Options: Completion3D, ShapeNet, ShapeNetCars, Completion3DPCCT
__C.DATASET.TRAIN_DATASET = 'ShapeNet'
__C.DATASET.TEST_DATASET = 'ShapeNet'
#
# Constants
#
__C.CONST = edict()
__C.CONST.NUM_WORKERS = 8
__C.CONST.N_INPUT_POINTS = 2048
#
# Directories
#
__C.DIR = edict()
__C.DIR.OUT_PATH = './exp/output'
__C.CONST.DEVICE = '0'
__C.CONST.WEIGHTS = '' # './pretrained/pcn/ckpt-best-pmpplus.pth specify' a path to run test and inference
#
# Memcached
#
__C.MEMCACHED = edict()
__C.MEMCACHED.ENABLED = False
__C.MEMCACHED.LIBRARY_PATH = '/mnt/lustre/share/pymc/py3'
__C.MEMCACHED.SERVER_CONFIG = '/mnt/lustre/share/memcached_client/server_list.conf'
__C.MEMCACHED.CLIENT_CONFIG = '/mnt/lustre/share/memcached_client/client.conf'
#
# Network
#
__C.NETWORK = edict()
__C.NETWORK.N_SAMPLING_POINTS = 2048
#
# Train
#
__C.TRAIN = edict()
__C.TRAIN.LAMBDA_CD = 1000
__C.TRAIN.LAMBDA_PMD = 1e-2
__C.TRAIN.BATCH_SIZE = 2
__C.TRAIN.N_EPOCHS = 150
__C.TRAIN.SAVE_FREQ = 25
__C.TRAIN.LEARNING_RATE = 0.001
__C.TRAIN.LR_MILESTONES = [50, 100, 150, 200, 250]
__C.TRAIN.GAMMA = .5
__C.TRAIN.BETAS = (.9, .999)
__C.TRAIN.WEIGHT_DECAY = 0
#
# Test
#
__C.TEST = edict()
__C.TEST.METRIC_NAME = 'ChamferDistance'