-
Notifications
You must be signed in to change notification settings - Fork 45
/
run-batch.py
330 lines (319 loc) · 16.1 KB
/
run-batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Copyright 2022 Dirk Moerenhout. All rights reserved.
#
# This program is free software: you can redistribute it and/or modify it under the terms
# of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not,
# see <https://www.gnu.org/licenses/>.
# We need sys for argv
import sys
# We need os.path for isdir, isfile
import os.path
# Our settings are in json format
import json
# To be safe we force gc to lower RAM pressure
import gc
# We want to replace the text encoder in the pipeline
import functools
# We want to parse arguments
import argparse
# Numpy is used to provide a random generator
import numpy
# We need to load images for img2img
# We want to save data to PNG
from PIL import Image, PngImagePlugin
# The pipelines
from diffusers import OnnxStableDiffusionPipeline, OnnxStableDiffusionImg2ImgPipeline
from pipeline_onnx_stable_diffusion_controlnet import OnnxStableDiffusionControlNetPipeline
# Model needed to load Text Encoder on CPU
from diffusers import OnnxRuntimeModel
# The schedulers
from diffusers import (
DDIMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2DiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler
)
# Support special text encoders
import OnnxDiffusersUI.lpw_pipe
# Default settings
defSettings = {
"width": 512,
"height": 512,
"reslist": [],
"steps": 30,
"stepslist": [],
"scale": 7.5,
"scalelist":[],
"seed":0,
"seedend":0,
"seedlist":[],
"task": "txt2img",
"model":"sd2_1-fp16",
"prompt": "",
"promptlist":[],
"negative_prompt": "",
"textenc": "standard",
"scheduler": "pndm",
"schedulerlist": [],
"strength": 0.9,
"strengthlist": []
}
parser = argparse.ArgumentParser()
parser.add_argument(
"--cpu-textenc",
action="store_true",
help="Load Text Encoder on CPU to save VRAM"
)
parser.add_argument(
"--subdirs",
action="store_true",
help="Add subdirs with settings.json to projects to run"
)
parser.add_argument(
'project',
nargs='+',
type=str,
help="Provide projects as directories that contain settings.json"
)
args = parser.parse_args()
projects=args.project
if args.subdirs:
for proj in args.project:
obj = os.scandir(proj)
for entry in obj:
if entry.is_dir():
if os.path.isfile(f"{proj}/{entry.name}/settings.json"):
projects.append(f"{proj}/{entry.name}")
for proj in projects:
print("Running project "+proj)
# Check for directory
if os.path.isdir(proj):
if os.path.isfile(proj+"/settings.json"):
with open(proj+"/settings.json", encoding="utf-8") as confFile:
projSettings=json.load(confFile)
# Merge dictionaries with project settings taking precedence
runSettings = defSettings | projSettings
# We need prompts
prereqmet=len(runSettings['prompt'])>0 or len(runSettings['promptlist'])>0
# We need a model
model="model/"+runSettings['model']
prereqmet=prereqmet and os.path.isfile(model+"/unet/model.onnx")
# We need a start image to do img2img or controlnet
if runSettings['task']=="img2img" or runSettings['task']=="controlnet":
infile=proj+"/input.png"
prereqmet = prereqmet and os.path.isfile(infile)
if prereqmet:
sched = {
"ddim": DDIMScheduler.from_pretrained(model, subfolder="scheduler"),
"deis": DEISMultistepScheduler.from_pretrained(model, subfolder="scheduler"),
"dpms_ms": DPMSolverMultistepScheduler.from_pretrained(model, subfolder="scheduler"),
"dpms_ss": DPMSolverSinglestepScheduler.from_pretrained(model, subfolder="scheduler"),
"euler_anc": EulerAncestralDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"euler": EulerDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"heun": HeunDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"kdpm2": KDPM2DiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"lms": LMSDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"pndm": PNDMScheduler.from_pretrained(model, subfolder="scheduler"),
"unipc": UniPCMultistepScheduler.from_pretrained(model, subfolder="scheduler")
}
if runSettings['task']=="img2img":
init_image = Image.open(infile).convert("RGB")
if args.cpu_textenc:
cputextenc=OnnxRuntimeModel.from_pretrained(model+"/text_encoder")
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
text_encoder=cputextenc,
safety_checker=None,
feature_extractor=None
)
else:
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
safety_checker=None,
feature_extractor=None
)
elif runSettings['task']=="controlnet":
init_image = Image.open(infile).convert("RGB")
if args.cpu_textenc:
cputextenc=OnnxRuntimeModel.from_pretrained(model+"/text_encoder")
pipe = OnnxStableDiffusionControlNetPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
text_encoder=cputextenc,
safety_checker=None,
feature_extractor=None
)
else:
pipe = OnnxStableDiffusionControlNetPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
safety_checker=None,
feature_extractor=None
)
else:
if args.cpu_textenc:
cputextenc=OnnxRuntimeModel.from_pretrained(model+"/text_encoder")
pipe = OnnxStableDiffusionPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
text_encoder=cputextenc,
safety_checker=None,
feature_extractor=None
)
else:
pipe = OnnxStableDiffusionPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
safety_checker=None,
feature_extractor=None
)
if runSettings['textenc'] == "lpw":
pipe._encode_prompt = functools.partial(lpw_pipe._encode_prompt, pipe)
generator = numpy.random
# Set schedulers for projects
if len(runSettings['schedulerlist'])==0:
schedulerlist=[runSettings['scheduler']]
else:
schedulerlist=runSettings['schedulerlist']
# Set seeds for project
if len(runSettings['seedlist'])==0:
if runSettings['seed']>runSettings['seedend']:
runSettings['seedend']=runSettings['seed']
seedlist=range(runSettings['seed'],runSettings['seedend']+1)
else:
seedlist=runSettings['seedlist']
# Set resolustions for project
if len(runSettings['reslist'])==0:
restuples=[(runSettings['width'],runSettings['height'])]
else:
restuples=[]
for resstr in runSettings['reslist']:
restuples.append(tuple(map(int, resstr.split("x"))))
# Set steps for project
if len(runSettings['stepslist'])==0:
stepslist=[runSettings['steps']]
else:
stepslist=runSettings['stepslist']
# Set guidance scales for project
if len(runSettings['scalelist'])==0:
scalelist=[runSettings['scale']]
else:
scalelist=runSettings['scalelist']
# Set prompts for project
if len(runSettings['promptlist'])==0:
promptlist=[runSettings['prompt']]
else:
promptlist=runSettings['promptlist']
# Set strengths for project
if len(runSettings['strengthlist'])==0:
strengthlist=[runSettings['strength']]
else:
strengthlist=runSettings['strengthlist']
imgnr=len(schedulerlist)*len(promptlist)*len(seedlist)*len(restuples)*len(stepslist)*len(scalelist)*len(strengthlist)
imgdone=0
for scheduler in schedulerlist:
if not sched[scheduler]:
scheduler="pndm"
pipe.scheduler=sched[scheduler]
promptnum=0
for prompt in promptlist:
for seed in seedlist:
for res in restuples:
for steps in stepslist:
for scale in scalelist:
for strength in strengthlist:
if runSettings['task']=="img2img":
filename=(
f"{proj}/result-p{promptnum}-seed{seed}-{res[0]}x{res[1]}-"+
f"-steps-{steps}-{scheduler}-scale-"+str(scale).replace(".","_")+
"-strength-"+str(strength).replace(".","_")+".png"
)
elif runSettings['task']=="controlnet":
filename=(
f"{proj}/result-p{promptnum}-seed{seed}-{res[0]}x{res[1]}-"+
f"-steps-{steps}-{scheduler}-scale-"+str(scale).replace(".","_")+
"-strength-"+str(strength).replace(".","_")+".png"
)
else:
filename=(
f"{proj}/result-p{promptnum}-seed{seed}-{res[0]}x{res[1]}-"+
f"-steps-{steps}-{scheduler}-scale-"+str(scale).replace(".","_")+".png"
)
if not os.path.isfile(filename):
generator.seed(seed)
if runSettings['task']=="img2img":
image = pipe(
image=init_image,
strength=strength,
prompt=prompt,
negative_prompt=runSettings['negative_prompt'],
num_inference_steps=steps,
guidance_scale=scale,
generator=generator).images[0]
elif runSettings['task']=="controlnet":
image = pipe(
image=init_image,
controlnet_conditioning_scale=strength,
prompt=prompt,
negative_prompt=runSettings['negative_prompt'],
num_inference_steps=steps,
guidance_scale=scale,
generator=generator).images[0]
else:
image = pipe(
prompt=prompt,
negative_prompt=runSettings['negative_prompt'],
width=res[0],
height=res[1],
num_inference_steps=steps,
guidance_scale=scale,
generator = generator).images[0]
metadata = PngImagePlugin.PngInfo()
metadata.add_text("Generator","Stable Diffusion ONNX https://github.com/Amblyopius/Stable-Diffusion-ONNX-FP16")
metadata.add_text("SD Model (local name)",model)
metadata.add_text("SD Prompt",prompt)
metadata.add_text("SD Negative Prompt",runSettings['negative_prompt'])
metadata.add_text("SD Scheduler",scheduler)
metadata.add_text("SD Steps",str(steps))
metadata.add_text("SD Guidance Scale",str(scale))
image.save(filename, pnginfo = metadata)
else:
print("Skipping existing image!")
imgdone+=1
print(f"Finished {imgdone}/{imgnr}")
promptnum+=1
del pipe
gc.collect()
else:
print("Minimum requirements not met! Skipping")
else:
print("Settings not found! Skipping")
else:
print("Path not found! Skipping")