-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
211 lines (174 loc) · 10.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
from tqdm import tqdm
from model import device
from pprint import PrettyPrinter
from dataset import PascalVOCDataset
from detect import detect_objects
from utils import label_map, rev_label_map, find_jaccard_overlap
def calculate_mAP(det_boxes, det_labels, det_scores, true_boxes, true_labels, true_difficulties):
"""
Calculate the Mean Average Precision (mAP) of detected objects.
See https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173 for an explanation
:param det_boxes: list of tensors, one tensor for each image containing detected objects' bounding boxes
:param det_labels: list of tensors, one tensor for each image containing detected objects' labels
:param det_scores: list of tensors, one tensor for each image containing detected objects' labels' scores
:param true_boxes: list of tensors, one tensor for each image containing actual objects' bounding boxes
:param true_labels: list of tensors, one tensor for each image containing actual objects' labels
:param true_difficulties: list of tensors, one tensor for each image containing actual objects' difficulty (0 or 1)
:return: list of average precisions for all classes, mean average precision (mAP)
"""
assert len(det_boxes) == len(det_labels) == len(det_scores) == len(true_boxes) == len(
true_labels) == len(
true_difficulties) # these are all lists of tensors of the same length, i.e. number of images
n_classes = len(label_map)
# Store all (true) objects in a single continuous tensor while keeping track of the image it is from
true_images = list()
for i in range(len(true_labels)):
true_images.extend([i] * true_labels[i].size(0))
true_images = torch.LongTensor(true_images).to(
device) # (n_objects), n_objects is the total no. of objects across all images
true_boxes = torch.cat(true_boxes, dim=0) # (n_objects, 4)
true_labels = torch.cat(true_labels, dim=0) # (n_objects)
true_difficulties = torch.cat(true_difficulties, dim=0) # (n_objects)
assert true_images.size(0) == true_boxes.size(0) == true_labels.size(0)
# Store all detections in a single continuous tensor while keeping track of the image it is from
det_images = list()
for i in range(len(det_labels)):
det_images.extend([i] * det_labels[i].size(0))
det_images = torch.LongTensor(det_images).to(device) # (n_detections)
det_boxes = torch.cat(det_boxes, dim=0) # (n_detections, 4)
det_labels = torch.cat(det_labels, dim=0) # (n_detections)
det_scores = torch.cat(det_scores, dim=0) # (n_detections)
assert det_images.size(0) == det_boxes.size(0) == det_labels.size(0) == det_scores.size(0)
# Calculate APs for each class (except background)
average_precisions = torch.zeros((n_classes - 1), dtype=torch.float) # (n_classes - 1)
for c in range(1, n_classes):
# Extract only objects with this class
true_class_images = true_images[true_labels == c] # (n_class_objects)
true_class_boxes = true_boxes[true_labels == c] # (n_class_objects, 4)
true_class_difficulties = true_difficulties[true_labels == c] # (n_class_objects)
n_easy_class_objects = true_class_difficulties.logical_not().sum().item() # ignore difficult objects
# Keep track of which true objects with this class have already been 'detected'
# So far, none
true_class_boxes_detected = torch.zeros((true_class_difficulties.size(0)), dtype=torch.uint8).to(
device) # (n_class_objects)
# Extract only detections with this class
det_class_images = det_images[det_labels == c] # (n_class_detections)
det_class_boxes = det_boxes[det_labels == c] # (n_class_detections, 4)
det_class_scores = det_scores[det_labels == c] # (n_class_detections)
n_class_detections = det_class_boxes.size(0)
if n_class_detections == 0:
continue
# Sort detections in decreasing order of confidence/scores
det_class_scores, sort_ind = torch.sort(det_class_scores, dim=0, descending=True) # (n_class_detections)
det_class_images = det_class_images[sort_ind] # (n_class_detections)
det_class_boxes = det_class_boxes[sort_ind] # (n_class_detections, 4)
# In the order of decreasing scores, check if true or false positive
true_positives = torch.zeros(n_class_detections, dtype=torch.float).to(device) # (n_class_detections)
false_positives = torch.zeros(n_class_detections, dtype=torch.float).to(device) # (n_class_detections)
for d in range(n_class_detections):
this_detection_box = det_class_boxes[d].unsqueeze(0) # (1, 4)
this_image = det_class_images[d] # (), scalar
# Find objects in the same image with this class, their difficulties, and whether they have been detected
# before
object_boxes = true_class_boxes[true_class_images == this_image] # (n_class_objects_in_img)
object_difficulties = true_class_difficulties[true_class_images == this_image] # (n_class_objects_in_img)
# If no such object in this image, then the detection is a false positive
if object_boxes.size(0) == 0:
false_positives[d] = 1
continue
# Find maximum overlap of this detection with objects in this image of this class
overlaps = find_jaccard_overlap(this_detection_box, object_boxes) # (1, n_class_objects_in_img)
max_overlap, ind = torch.max(overlaps.squeeze(0), dim=0) # (), () - scalars
# 'ind' is the index of the object in these image-level tensors 'object_boxes', 'object_difficulties'
# In the original class-level tensors 'true_class_boxes', etc., 'ind' corresponds to object with index...
original_ind = torch.arange(true_class_boxes.size(0), device=device)[true_class_images == this_image][ind]
# We need 'original_ind' to update 'true_class_boxes_detected'
# If the maximum overlap is greater than the threshold of 0.5, it's a match
if max_overlap.item() > 0.5:
# If the object it matched with is 'difficult', ignore it
if object_difficulties[ind] == 0:
# If this object has already not been detected, it's a true positive
if true_class_boxes_detected[original_ind] == 0:
true_positives[d] = 1
true_class_boxes_detected[original_ind] = 1 # this object has now been detected/accounted for
# Otherwise, it's a false positive (since this object is already accounted for)
else:
false_positives[d] = 1
# Otherwise, the detection occurs in a different location than the actual object, and is a false positive
else:
false_positives[d] = 1
# Compute cumulative precision and recall at each detection in the order of decreasing scores
cumul_true_positives = torch.cumsum(true_positives, dim=0) # (n_class_detections)
cumul_false_positives = torch.cumsum(false_positives, dim=0) # (n_class_detections)
cumul_precision = cumul_true_positives / (
cumul_true_positives + cumul_false_positives + 1e-10) # (n_class_detections)
cumul_recall = cumul_true_positives / n_easy_class_objects # (n_class_detections)
# Find the mean of the maximum of the precisions corresponding to recalls above the threshold 't'
recall_thresholds = torch.arange(start=0, end=1.1, step=.1).tolist() # (11)
precisions = torch.zeros((len(recall_thresholds)), dtype=torch.float).to(device) # (11)
for i, t in enumerate(recall_thresholds):
recalls_above_t = cumul_recall >= t
if recalls_above_t.any():
precisions[i] = cumul_precision[recalls_above_t].max()
else:
precisions[i] = 0.
average_precisions[c - 1] = precisions.mean() # c is in [1, n_classes - 1]
# Calculate Mean Average Precision (mAP)
mean_average_precision = average_precisions.mean().item()
# Keep class-wise average precisions in a dictionary
average_precisions = {rev_label_map[c + 1]: v for c, v in enumerate(average_precisions.tolist())}
return average_precisions, mean_average_precision
def evaluate(test_loader, model, pp):
"""
Evaluate.
:param test_loader: DataLoader for test data
:param model: model
"""
# Make sure it's in eval mode
model.eval()
# Lists to store detected and true boxes, labels, scores
det_boxes = list()
det_labels = list()
det_scores = list()
true_boxes = list()
true_labels = list()
true_difficulties = list() # it is necessary to know which objects are 'difficult', see 'calculate_mAP' in utils.py
with torch.no_grad():
# Batches
for i, (images, boxes, labels, difficulties) in enumerate(tqdm(test_loader, desc='Evaluating')):
images = images.to(device) # (N, 3, 300, 300)
# Forward prop.
predicted_locs, predicted_scores = model(images)
# Detect objects in SSD output
det_boxes_batch, det_labels_batch, det_scores_batch = detect_objects(predicted_locs, predicted_scores,
min_score=0.01, max_overlap=0.45,
top_k=200)
# Evaluation MUST be at min_score=0.01, max_overlap=0.45, top_k=200 for fair comparison with the paper's
# results and other repos
# Store this batch's results for mAP calculation
boxes = [b.to(device) for b in boxes]
labels = [l.to(device) for l in labels]
difficulties = [d.to(device) for d in difficulties]
det_boxes.extend(det_boxes_batch)
det_labels.extend(det_labels_batch)
det_scores.extend(det_scores_batch)
true_boxes.extend(boxes)
true_labels.extend(labels)
true_difficulties.extend(difficulties)
# Calculate mAP
APs, mAP = calculate_mAP(det_boxes, det_labels, det_scores, true_boxes, true_labels, true_difficulties)
# Print AP for each class
pp.pprint(APs)
print('\nMean Average Precision (mAP): %.3f' % mAP)
if __name__ == "__main__":
pp = PrettyPrinter()
data_folder: str = r'D:\ObjectDetection\PascalVOC' # folder with data files
checkpoint = torch.load("checkpoints/checkpoint_ssd300.pt", map_location='cuda')
model = checkpoint['model']
model = model.to(device)
test_dataset = PascalVOCDataset(data_folder, split='test', keep_difficult=False)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=36, shuffle=False,
collate_fn=test_dataset.collate_fn, num_workers=1,
pin_memory=True)
evaluate(test_loader, model, pp)