forked from ardyesp/DLO-138
-
Notifications
You must be signed in to change notification settings - Fork 0
/
display.ino
768 lines (597 loc) · 19.2 KB
/
display.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
// TFT display constants
#define PORTRAIT 0
#define LANDSCAPE 1
#define TFT_WIDTH 320
#define TFT_HEIGHT 240
#define GRID_WIDTH 300
#define GRID_HEIGHT 210
#define GRID_COLOR 0x4208
#define ADC_MAX_VAL 4096
#define ADC_2_GRID 800
Adafruit_TFTLCD_8bit_STM32 tft;
// rendered waveform data is stored here for erasing
int16_t ch1Old[GRID_WIDTH] = {0};
int16_t ch2Old[GRID_WIDTH] = {0};
int8_t bitOld[GRID_WIDTH] = {0};
// grid variables
uint8_t hOffset = (TFT_WIDTH - GRID_WIDTH)/2;
uint8_t vOffset = (TFT_HEIGHT - GRID_HEIGHT)/2;
uint8_t dHeight = GRID_HEIGHT/8;
// plot variables -- modified by interface section
// controls which section of waveform is displayed on screen
// 0 < xCursor < (NUM_SAMPLES - GRID_WIDTH)
int16_t xCursor;
// controls the vertical positioning of waveform
int16_t yCursors[4];
// controls which waveforms are displayed
boolean waves[4];
// prints waveform statistics on screen
boolean printStats = true;
// repaint the labels on screen in draw loop
boolean paintLabels = false;
// labels around the grid
enum {L_timebase, L_triggerType, L_triggerEdge, L_triggerLevel, L_waves, L_window, L_vPos1, L_vPos2, L_vPos3, L_vPos4};
uint8_t currentFocus = L_timebase;
// ------------------------
void focusNextLabel() {
// ------------------------
currentFocus++;
if((currentFocus == L_vPos1) && !waves[0])
currentFocus++;
if((currentFocus == L_vPos2) && !waves[1])
currentFocus++;
if((currentFocus == L_vPos3) && !waves[2])
currentFocus++;
if((currentFocus == L_vPos4) && !waves[3])
currentFocus++;
if(currentFocus > L_vPos4)
currentFocus = L_timebase;
}
// ------------------------
void repaintLabels() {
// ------------------------
paintLabels = true;
}
// ------------------------
void initDisplay() {
// ------------------------
tft.reset();
tft.begin(0x9341);
tft.setRotation(LANDSCAPE);
tft.fillScreen(ILI9341_BLACK);
banner();
delay(4000);
// and paint o-scope
clearWaves();
}
// ------------------------
void drawWaves() {
// ------------------------
static boolean printStatsOld = false;
if(printStatsOld && !printStats)
clearStats();
printStatsOld = printStats;
// draw the grid
drawGrid();
// clear and draw signal traces
clearNDrawSignals();
// if requested update the stats
if(printStats)
drawStats();
// if label repaint requested - do so now
if(paintLabels) {
drawLabels();
paintLabels = false;
}
}
// ------------------------
void clearWaves() {
// ------------------------
// clear screen
tft.fillScreen(ILI9341_BLACK);
// and paint o-scope
drawGrid();
drawLabels();
}
boolean cDisplayed = false;
// ------------------------
void indicateCapturing() {
// ------------------------
if((currentTimeBase > T2MS) || (triggerType != TRIGGER_AUTO)) {
cDisplayed = true;
tft.setTextColor(ILI9341_PINK, ILI9341_BLACK);
tft.setCursor(140, 20);
tft.print("Sampling...");
}
}
// ------------------------
void indicateCapturingDone() {
// ------------------------
if(cDisplayed) {
tft.fillRect(140, 20, 66, 8, ILI9341_BLACK);
cDisplayed = false;
}
}
// local operations below
// 0, 1 Analog channels. 2, 3 digital channels
// ------------------------
void clearNDrawSignals() {
// ------------------------
static boolean wavesOld[4] = {false,};
static int16_t yCursorsOld[4];
// snap the values to prevent interrupt from changing mid-draw
int16_t xCursorSnap = xCursor;
int16_t zeroVoltageA1Snap = zeroVoltageA1;
int16_t zeroVoltageA2Snap = zeroVoltageA2;
int16_t yCursorsSnap[4];
boolean wavesSnap[4];
yCursorsSnap[0] = yCursors[0];
yCursorsSnap[1] = yCursors[1];
yCursorsSnap[2] = yCursors[2];
yCursorsSnap[3] = yCursors[3];
wavesSnap[0] = waves[0];
wavesSnap[1] = waves[1];
wavesSnap[2] = waves[2];
wavesSnap[3] = waves[3];
// draw the GRID_WIDTH section of the waveform from xCursorSnap
int16_t val1, val2;
int16_t transposedPt1, transposedPt2;
uint8_t shiftedVal;
// sampling stopped at sIndex - 1
int j = sIndex + xCursorSnap;
if(j >= NUM_SAMPLES)
j = j - NUM_SAMPLES;
// go through all the data points
for(int i = 1, jn = j + 1; i < GRID_WIDTH - 1; j++, i++, jn++) {
if(jn == NUM_SAMPLES)
jn = 0;
if(j == NUM_SAMPLES)
j = 0;
// erase old line segment
if(wavesOld[3]) {
val1 = (bitOld[i] & 0b10000000) ? dHeight : 0;
val2 = (bitOld[i + 1] & 0b10000000) ? dHeight : 0;
// clear the line segment
transposedPt1 = GRID_HEIGHT + vOffset + yCursorsOld[3] - val1;
transposedPt2 = GRID_HEIGHT + vOffset + yCursorsOld[3] - val2;
plotLineSegment(transposedPt1, transposedPt2, i, ILI9341_BLACK);
}
if(wavesOld[2]) {
val1 = (bitOld[i] & 0b01000000) ? dHeight : 0;
val2 = (bitOld[i + 1] & 0b01000000) ? dHeight : 0;
// clear the line segment
transposedPt1 = GRID_HEIGHT + vOffset + yCursorsOld[2] - val1;
transposedPt2 = GRID_HEIGHT + vOffset + yCursorsOld[2] - val2;
plotLineSegment(transposedPt1, transposedPt2, i, ILI9341_BLACK);
}
if(wavesOld[1]) {
val1 = (ch2Old[i] * GRID_HEIGHT)/ADC_2_GRID;
val2 = (ch2Old[i + 1] * GRID_HEIGHT)/ADC_2_GRID;
// clear the line segment
transposedPt1 = GRID_HEIGHT + vOffset + yCursorsOld[1] - val1;
transposedPt2 = GRID_HEIGHT + vOffset + yCursorsOld[1] - val2;
plotLineSegment(transposedPt1, transposedPt2, i, ILI9341_BLACK);
}
if(wavesOld[0]) {
val1 = (ch1Old[i] * GRID_HEIGHT)/ADC_2_GRID;
val2 = (ch1Old[i + 1] * GRID_HEIGHT)/ADC_2_GRID;
// clear the line segment
transposedPt1 = GRID_HEIGHT + vOffset + yCursorsOld[0] - val1;
transposedPt2 = GRID_HEIGHT + vOffset + yCursorsOld[0] - val2;
plotLineSegment(transposedPt1, transposedPt2, i, ILI9341_BLACK);
}
// draw new segments
if(wavesSnap[3]) {
shiftedVal = bitStore[j] >> 7;
val1 = (shiftedVal & 0b10000000) ? dHeight : 0;
val2 = ((bitStore[jn] >> 7) & 0b10000000) ? dHeight : 0;
bitOld[i] &= 0b01000000;
bitOld[i] |= shiftedVal & 0b10000000;
// draw the line segment
transposedPt1 = GRID_HEIGHT + vOffset + yCursorsSnap[3] - val1;
transposedPt2 = GRID_HEIGHT + vOffset + yCursorsSnap[3] - val2;
plotLineSegment(transposedPt1, transposedPt2, i, DG_SIGNAL2);
}
if(wavesSnap[2]) {
shiftedVal = bitStore[j] >> 7;
val1 = (shiftedVal & 0b01000000) ? dHeight : 0;
val2 = ((bitStore[jn] >> 7) & 0b01000000) ? dHeight : 0;
bitOld[i] &= 0b10000000;
bitOld[i] |= shiftedVal & 0b01000000;
// draw the line segment
transposedPt1 = GRID_HEIGHT + vOffset + yCursorsSnap[2] - val1;
transposedPt2 = GRID_HEIGHT + vOffset + yCursorsSnap[2] - val2;
plotLineSegment(transposedPt1, transposedPt2, i, DG_SIGNAL1);
}
if(wavesSnap[1]) {
val1 = ((ch2Capture[j] - zeroVoltageA2Snap) * GRID_HEIGHT)/ADC_2_GRID;
val2 = ((ch2Capture[jn] - zeroVoltageA2Snap) * GRID_HEIGHT)/ADC_2_GRID;
ch2Old[i] = ch2Capture[j] - zeroVoltageA2Snap;
// draw the line segment
transposedPt1 = GRID_HEIGHT + vOffset + yCursorsSnap[1] - val1;
transposedPt2 = GRID_HEIGHT + vOffset + yCursorsSnap[1] - val2;
plotLineSegment(transposedPt1, transposedPt2, i, AN_SIGNAL2);
}
if(wavesSnap[0]) {
val1 = ((ch1Capture[j] - zeroVoltageA1Snap) * GRID_HEIGHT)/ADC_2_GRID;
val2 = ((ch1Capture[jn] - zeroVoltageA1Snap) * GRID_HEIGHT)/ADC_2_GRID;
ch1Old[i] = ch1Capture[j] - zeroVoltageA1Snap;
// draw the line segment
transposedPt1 = GRID_HEIGHT + vOffset + yCursorsSnap[0] - val1;
transposedPt2 = GRID_HEIGHT + vOffset + yCursorsSnap[0] - val2;
plotLineSegment(transposedPt1, transposedPt2, i, AN_SIGNAL1);
}
}
// store the drawn parameters to old storage
wavesOld[0] = wavesSnap[0];
wavesOld[1] = wavesSnap[1];
wavesOld[2] = wavesSnap[2];
wavesOld[3] = wavesSnap[3];
yCursorsOld[0] = yCursorsSnap[0];
yCursorsOld[1] = yCursorsSnap[1];
yCursorsOld[2] = yCursorsSnap[2];
yCursorsOld[3] = yCursorsSnap[3];
}
// ------------------------
inline void plotLineSegment(int16_t transposedPt1, int16_t transposedPt2, int index, uint16_t color) {
// ------------------------
// range checks
if(transposedPt1 > (GRID_HEIGHT + vOffset))
transposedPt1 = GRID_HEIGHT + vOffset;
if(transposedPt1 < vOffset)
transposedPt1 = vOffset;
if(transposedPt2 > (GRID_HEIGHT + vOffset))
transposedPt2 = GRID_HEIGHT + vOffset;
if(transposedPt2 < vOffset)
transposedPt2 = vOffset;
// draw the line segments
tft.drawLine(index + hOffset, transposedPt1, index + hOffset, transposedPt2, color);
}
// ------------------------
void drawVCursor(int channel, uint16_t color, boolean highlight) {
// ------------------------
int cPos = GRID_HEIGHT + vOffset + yCursors[channel];
tft.fillTriangle(0, cPos - 5, hOffset, cPos, 0, cPos + 5, color);
if(highlight)
tft.drawRect(0, cPos - 7, hOffset, 14, ILI9341_WHITE);
}
// ------------------------
void drawGrid() {
// ------------------------
uint8_t hPacing = GRID_WIDTH / 12;
uint8_t vPacing = GRID_HEIGHT / 8;
for(int i = 1; i < 12; i++)
tft.drawFastVLine(i * hPacing + hOffset, vOffset, GRID_HEIGHT, GRID_COLOR);
for(int i = 1; i < 8; i++)
tft.drawFastHLine(hOffset, i * vPacing + vOffset, GRID_WIDTH, GRID_COLOR);
for(int i = 1; i < 5*8; i++)
tft.drawFastHLine(hOffset + GRID_WIDTH/2 - 3, i * vPacing/5 + vOffset, 7, GRID_COLOR);
for(int i = 1; i < 5*12; i++)
tft.drawFastVLine(i * hPacing/5 + hOffset, vOffset + GRID_HEIGHT/2 - 4, 7, GRID_COLOR);
tft.drawRect(hOffset, vOffset, GRID_WIDTH, GRID_HEIGHT, ILI9341_WHITE);
}
// ------------------------
void drawLabels() {
// ------------------------
// draw the static labels around the grid
// erase top bar
tft.fillRect(hOffset, 0, TFT_WIDTH, vOffset, ILI9341_BLACK);
tft.fillRect(hOffset + GRID_WIDTH, 0, hOffset, TFT_HEIGHT, ILI9341_BLACK);
// paint run/hold information
// -----------------
tft.setCursor(hOffset + 2, 4);
if(hold) {
tft.setTextColor(ILI9341_WHITE, ILI9341_RED);
tft.print(" HOLD ");
}
else {
tft.setTextColor(ILI9341_GREEN, ILI9341_BLACK);
tft.print("RUN");
}
// draw x-window at top, range = 200px
// -----------------
int sampleSizePx = 160;
float lOffset = (TFT_WIDTH - sampleSizePx)/2;
tft.drawFastVLine(lOffset, 3, vOffset - 6, ILI9341_GREEN);
tft.drawFastVLine(lOffset + sampleSizePx, 3, vOffset - 6, ILI9341_GREEN);
tft.drawFastHLine(lOffset, vOffset/2, sampleSizePx, ILI9341_GREEN);
// where does xCursor lie in this range
float windowSize = GRID_WIDTH * sampleSizePx/NUM_SAMPLES;
float xCursorPx = xCursor * sampleSizePx/NUM_SAMPLES + lOffset;
if(currentFocus == L_window)
tft.drawRect(xCursorPx, 4, windowSize, vOffset - 8, ILI9341_WHITE);
else
tft.fillRect(xCursorPx, 4, windowSize, vOffset - 8, ILI9341_GREEN);
// print active wave indicators
// -----------------
tft.setCursor(250, 4);
if(waves[0]) {
tft.setTextColor(AN_SIGNAL1, ILI9341_BLACK);
tft.print("A1 ");
}
else
tft.print(" ");
if(waves[1]) {
tft.setTextColor(AN_SIGNAL2, ILI9341_BLACK);
tft.print("A2 ");
}
else
tft.print(" ");
if(waves[2]) {
tft.setTextColor(DG_SIGNAL1, ILI9341_BLACK);
tft.print("D1 ");
}
else
tft.print(" ");
if(waves[3]) {
tft.setTextColor(DG_SIGNAL2, ILI9341_BLACK);
tft.print("D2");
}
if(currentFocus == L_waves)
tft.drawRect(247, 0, 72, vOffset, ILI9341_WHITE);
// erase left side of grid
tft.fillRect(0, 0, hOffset, TFT_HEIGHT, ILI9341_BLACK);
// draw new wave cursors
// -----------------
if(waves[3])
drawVCursor(3, DG_SIGNAL2, (currentFocus == L_vPos4));
if(waves[2])
drawVCursor(2, DG_SIGNAL1, (currentFocus == L_vPos3));
if(waves[1])
drawVCursor(1, AN_SIGNAL2, (currentFocus == L_vPos2));
if(waves[0])
drawVCursor(0, AN_SIGNAL1, (currentFocus == L_vPos1));
// erase bottom bar
tft.fillRect(hOffset, GRID_HEIGHT + vOffset, TFT_WIDTH, vOffset, ILI9341_BLACK);
// print input switch pos
// -----------------
tft.setTextColor(ILI9341_YELLOW, ILI9341_BLACK);
tft.setCursor(hOffset + 10, GRID_HEIGHT + vOffset + 4);
tft.print(rngNames[rangePos]);
tft.setCursor(hOffset + 50, GRID_HEIGHT + vOffset + 4);
tft.print(cplNames[couplingPos]);
// print new timebase
// -----------------
tft.setTextColor(ILI9341_WHITE, ILI9341_BLACK);
tft.setCursor(145, GRID_HEIGHT + vOffset + 4);
if(currentFocus == L_timebase)
tft.drawRect(140, GRID_HEIGHT + vOffset, 45, vOffset, ILI9341_WHITE);
tft.print(getTimebaseLabel());
// print trigger type
// -----------------
tft.setTextColor(ILI9341_GREEN, ILI9341_BLACK);
tft.setCursor(230, GRID_HEIGHT + vOffset + 4);
if(currentFocus == L_triggerType)
tft.drawRect(225, GRID_HEIGHT + vOffset, 35, vOffset, ILI9341_WHITE);
switch(triggerType) {
case TRIGGER_AUTO:
tft.print("AUTO");
break;
case TRIGGER_NORM:
tft.print("NORM");
break;
case TRIGGER_SINGLE:
tft.print("SING");
break;
}
// draw trigger edge
// -----------------
if(currentFocus == L_triggerEdge)
tft.drawRect(266, GRID_HEIGHT + vOffset, 15, vOffset + 4, ILI9341_WHITE);
int trigX = 270;
if(triggerRising) {
tft.drawFastHLine(trigX, TFT_HEIGHT - 3, 5, ILI9341_GREEN);
tft.drawFastVLine(trigX + 4, TFT_HEIGHT -vOffset + 2, vOffset - 4, ILI9341_GREEN);
tft.drawFastHLine(trigX + 4, TFT_HEIGHT -vOffset + 2, 5, ILI9341_GREEN);
tft.fillTriangle(trigX + 2, 232, trigX + 4, 230, trigX + 6, 232, ILI9341_GREEN);
}
else {
tft.drawFastHLine(trigX + 4, TFT_HEIGHT - 3, 5, ILI9341_GREEN);
tft.drawFastVLine(trigX + 4, TFT_HEIGHT -vOffset + 2, vOffset - 4, ILI9341_GREEN);
tft.drawFastHLine(trigX - 1, TFT_HEIGHT -vOffset + 2, 5, ILI9341_GREEN);
tft.fillTriangle(trigX + 2, 231, trigX + 4, 233, trigX + 6, 231, ILI9341_GREEN);
}
// draw trigger level on right side
// -----------------
int cPos = GRID_HEIGHT + vOffset + yCursors[0] - getTriggerLevel()/3;
tft.fillTriangle(TFT_WIDTH, cPos - 5, TFT_WIDTH - hOffset, cPos, TFT_WIDTH, cPos + 5, AN_SIGNAL1);
if(currentFocus == L_triggerLevel)
tft.drawRect(GRID_WIDTH + hOffset, cPos - 7, hOffset, 14, ILI9341_WHITE);
}
// #define DRAW_TIMEBASE
// ------------------------
void drawStats() {
// ------------------------
static long lastCalcTime = 0;
boolean clearStats = false;
// calculate stats once a while
if(millis() - lastCalcTime > 300) {
lastCalcTime = millis();
calculateStats();
clearStats = true;
}
// draw stat labels
tft.setTextColor(ILI9341_RED, ILI9341_BLACK);
tft.setCursor(25, 20);
tft.print("Freq:");
tft.setCursor(25, 30);
tft.print("Cycle:");
tft.setCursor(25, 40);
tft.print("PW:");
tft.setCursor(25, 50);
tft.print("Duty:");
#ifdef DRAW_TIMEBASE
tft.setCursor(25, 60);
tft.print("T/div:");
#endif
tft.setCursor(240, 20);
tft.print("Vmax:");
tft.setCursor(240, 30);
tft.print("Vmin:");
tft.setCursor(240, 40);
tft.print("Vavr:");
tft.setCursor(240, 50);
tft.print("Vpp:");
tft.setCursor(240, 60);
tft.print("Vrms:");
// print new stats
tft.setTextColor(ILI9341_WHITE, ILI9341_BLACK);
if(clearStats)
tft.fillRect(60, 20, 50, 50, ILI9341_BLACK);
if(wStats.pulseValid) {
tft.setCursor(60, 20);
tft.print((int) wStats.freq);
tft.setCursor(60, 30);
tft.print(wStats.cycle); tft.print(" ms");
tft.setCursor(60, 40);
tft.print(wStats.avgPW/1000); tft.print(" ms");
tft.setCursor(60, 50);
tft.print(wStats.duty); tft.print(" %");
}
#ifdef DRAW_TIMEBASE
tft.setCursor(60, 60);
int timebase = ((double)samplingTime * 25) / NUM_SAMPLES;
if(timebase > 10000) {
tft.print(timebase/1000); tft.print(" ms");
}
else {
tft.print(timebase); tft.print(" us");
}
#endif
if(clearStats)
tft.fillRect(270, 20, GRID_WIDTH + hOffset - 270 - 1, 50, ILI9341_BLACK);
drawVoltage(wStats.Vmaxf, 20, wStats.mvPos);
drawVoltage(wStats.Vminf, 30, wStats.mvPos);
drawVoltage(wStats.Vavrf, 40, wStats.mvPos);
drawVoltage(wStats.Vmaxf - wStats.Vminf, 50, wStats.mvPos);
drawVoltage(wStats.Vrmsf, 60, wStats.mvPos);
}
// ------------------------
void calculateStats() {
// ------------------------
// extract waveform stats
int16_t Vmax = -ADC_MAX_VAL, Vmin = ADC_MAX_VAL;
int32_t sumSamples = 0;
int64_t sumSquares = 0;
int32_t freqSumSamples = 0;
for(uint16_t k = 0; k < NUM_SAMPLES; k++) {
int16_t val = ch1Capture[k] - zeroVoltageA1;
if(Vmax < val)
Vmax = val;
if(Vmin > val)
Vmin = val;
sumSamples += val;
freqSumSamples += ch1Capture[k];
sumSquares += (val * val);
}
// find out frequency
uint16_t fVavr = freqSumSamples/NUM_SAMPLES;
boolean dnWave = (ch1Capture[sIndex] < fVavr - 10);
boolean firstOne = true;
uint16_t cHigh = 0;
uint16_t sumCW = 0;
uint16_t sumPW = 0;
uint16_t numCycles = 0;
uint16_t numHCycles = 0;
// sampling stopped at sIndex - 1
for(uint16_t sCtr = 0, k = sIndex; sCtr < NUM_SAMPLES; sCtr++, k++) {
if(k == NUM_SAMPLES)
k = 0;
// mark the points where wave transitions the average value
if(dnWave && (ch1Capture[k] > fVavr + 10)) {
if(!firstOne) {
sumCW += (sCtr - cHigh);
numCycles++;
}
else
firstOne = false;
dnWave = false;
cHigh = sCtr;
}
if(!dnWave && (ch1Capture[k] < fVavr - 10)) {
if(!firstOne) {
sumPW += (sCtr - cHigh);
numHCycles++;
}
dnWave = true;
}
}
double tPerSample = ((double)samplingTime) / NUM_SAMPLES;
float timePerDiv = tPerSample * 25;
double avgCycleWidth = sumCW * tPerSample / numCycles;
wStats.avgPW = sumPW * tPerSample / numHCycles;
wStats.duty = wStats.avgPW * 100 / avgCycleWidth;
wStats.freq = 1000000/avgCycleWidth;
wStats.cycle = avgCycleWidth/1000;
wStats.pulseValid = (avgCycleWidth != 0) && (wStats.avgPW != 0) && ((Vmax - Vmin) > 20);
wStats.mvPos = (rangePos == RNG_50mV) || (rangePos == RNG_20mV) || (rangePos == RNG_10mV);
wStats.Vrmsf = sqrt(sumSquares/NUM_SAMPLES) * adcMultiplier[rangePos];
wStats.Vavrf = sumSamples/NUM_SAMPLES * adcMultiplier[rangePos];
wStats.Vmaxf = Vmax * adcMultiplier[rangePos];
wStats.Vminf = Vmin * adcMultiplier[rangePos];
}
// ------------------------
void drawVoltage(float volt, int y, boolean mvRange) {
// ------------------------
// text is standard 5 px wide
int numDigits = 1;
int lVolt = volt;
// is there a negative sign at front
if(volt < 0) {
numDigits++;
lVolt = -lVolt;
}
// how many digits before 0
if(lVolt > 999)
numDigits++;
if(lVolt > 99)
numDigits++;
if(lVolt > 9)
numDigits++;
// mv range has mV appended at back
if(mvRange) {
numDigits += 1;
int x = GRID_WIDTH + hOffset - 10 - numDigits * 5;
tft.setCursor(x, y);
int iVolt = volt;
tft.print(iVolt);
tft.print("m");
}
else {
// non mV range has two decimal pos and V appended at back
numDigits += 3;
int x = GRID_WIDTH + hOffset -10 - numDigits * 5;
tft.setCursor(x, y);
tft.print(volt);
}
}
// ------------------------
void clearStats() {
// ------------------------
tft.fillRect(hOffset, vOffset, GRID_WIDTH, 80, ILI9341_BLACK);
}
// ------------------------
void banner() {
// ------------------------
tft.setTextColor(ILI9341_WHITE, ILI9341_BLACK);
tft.setTextSize(2);
tft.setCursor(110, 30);
tft.print("DLO-138");
tft.drawRect(100, 25, 100, 25, ILI9341_WHITE);
tft.setTextSize(1);
tft.setCursor(30, 70);
tft.print("Dual Channel O-Scope with logic analyzer");
tft.setCursor(30, 95);
tft.print("Usage: ");
tft.setTextColor(ILI9341_YELLOW, ILI9341_BLACK);
tft.print("https://github.com/ardyesp/DLO-138");
tft.setTextColor(ILI9341_WHITE, ILI9341_BLACK);
tft.setCursor(30, 120);
tft.print("DSO-138 hardware by JYE-Tech");
tft.setCursor(30, 145);
tft.print("Firmware version: ");
tft.print(FIRMWARE_VERSION);
tft.setTextSize(1);
tft.setCursor(30, 200);
tft.print("GNU GENERAL PUBLIC LICENSE Version 3");
}