-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
75 lines (54 loc) · 2.57 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
super(DecoderRNN, self).__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.num_layers = num_layers
# Embedding of Word Vector(Tokens) to Vector of fixed size (embed_size)
self.embedding = nn.Embedding(vocab_size, embed_size)
# LSTM
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, True, True, 0.3)
# Linear layer from LSTM to Output
self.linear = nn.Linear(hidden_size, vocab_size)
def forward(self, features, captions):
# Embedded Word vectors from caption
embeds = self.embedding(captions[:,:-1])
inputs = torch.cat((features.unsqueeze(dim=1), embeds), dim=1)
lstm_out, _ = self.lstm(inputs)
outputs = self.linear(lstm_out)
return outputs
def sample(self, inputs, states=None, max_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
caption = []
# initialize the hidden state
hidden = (torch.randn(self.num_layers, 1, self.hidden_size).to(inputs.device),
torch.randn(self.num_layers, 1, self.hidden_size).to(inputs.device))
# feed the hidden state back to itself
for i in range(max_len):
lstm_out, hidden = self.lstm(inputs, hidden)
outputs = self.linear(lstm_out)
outputs = outputs.squeeze(1)
tokenid = outputs.argmax(dim=1)
caption.append(tokenid.item())
# input for next iteration
inputs = self.embedding(tokenid.unsqueeze(0))
return caption