-
Notifications
You must be signed in to change notification settings - Fork 2
/
WARPdSR.m
217 lines (190 loc) · 7.54 KB
/
WARPdSR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
function [x_final, y_final, all_iterations, err_iterations] = WARPdSR(opA, proxJ, b, x0, y0, delta, n_iter, k_iter, options)
% INPUTS
% ---------------------------
% opA (function handle) - The sampling operator. opA(x,1) is the forward transform, and opA(y,0) is the adjoint.
% proxJ (function handle) - The proximal operator of J.
% b (vector) - Measurement vector.
% x0 (vector) - Initial guess of x.
% y0 (vector) - Initial guess of dual vector.
% delta (double) - Algorithm parameter.
% n_iter (int) - Number of outer iterations.
% k_iter (int) - Number of inner iterations.
% options - Additional options:
% .store tells the algorithm whether to store all the iterations
% .type is the type of output (1 is non-ergodic for primal and dual,
% 2 is ergodic for primal and non-ergodic for dual,
% 3 is non-ergodic for primal and ergodic for dual,
% 4 is ergodic for primal and dual, 5 is plain PD iterations).
% .C1 and .C2 are constants in the inequality in the paper.
% .nu is the algorithmic parameter (optimal is exp(-1))
% .L_A is an upper bound on the norm of A.
% .tau is the proximal step size
% .display = 1 displays progress of each call to InnerIt, 0 surpresses this output
% .errFcn is an error function computed at each iteration
% .opB operator B for l1 analysis term, this also needs op.q (dim of range of op.B)
%
% OUTPUTS
% -------------------------
% x_final (vector) - Reconstructed vector (primal).
% y_final (vector) - Reconstructed vector (dual).
% all_iterations (cell) - If options.store = 1, this is a cell array with all the iterates, otherwise it is an empty cell array
% err_iterations - If options.errFcn is given, this is a cell array with all the error function computed for the iterates, otherwise it is an empty cell array
% add the matrix B if supplied to form joint matrix
if isfield(options,'opB')
q=options.q;
opB = options.opB;
b=[b(:);zeros(q,1)];
if ~isfield(options,'L_B')
fprintf('Computing the norm of B...');
l=rand(length(x0),1);
l=l/norm(l);
options.L_B = 1;
for j=1:10 % perform power iterations
l2=opB(opB(l,1),0);
options.L_B=1.01*sqrt(norm(l2));
l=l2/norm(l2);
end
fprintf('upper bound for ||B|| is %d\n',options.L_B);
end
else
q=0;
options.L_B=0;
opB=[];
end
% set default parameters if these are not given
if ~isfield(options,'store')
options.store=0;
end
if ~isfield(options,'type')
options.type=1;
end
if ~isfield(options,'nu')
options.nu=exp(-1);
end
if ~isfield(options,'tau')
options.tau=1;
end
if ~isfield(options,'display')
options.display=1;
end
if ~isfield(options,'lambda')
options.lambda=1./options.C2;
end
if ~isfield(options,'L_A')
fprintf('Computing the norm of A... ');
l=rand(length(x0),1);
l=l/norm(l);
options.L_A = 1;
for j=1:10 % perform power iterations
l2=opA(opA(l,1),0);
options.L_A=1.01*sqrt(norm(l2));
l=l2/norm(l2);
end
fprintf('upper bound for ||A|| is %d\n',options.L_A);
end
psi = x0;
y = y0;
omega = options.C2*norm(b(:),2);%+norm(x0(:).*weights(:),1);
all_iterations = cell([n_iter,1]);
err_iterations = [];
% perform the inner iterations
fprintf('Performing the inner iterations...\n');
for j = 1:n_iter
fprintf('n=%d Progress: ',j);
if q>0
tau1=options.tau*options.C1*(delta+omega)/(options.L_A+options.L_B*sqrt(q/options.C2^2));
tau2=options.tau/(options.L_A*options.C1*(delta+omega));
tau3=options.tau*sqrt(q/options.C2^2)/(options.L_B*options.C1*(delta+omega));
else
tau1=options.tau*options.C1*(delta+omega)/(options.L_A);
tau2=options.tau/(options.L_A*options.C1*(delta+omega));
tau3=0;
end
[psi, y, cell_inner_it, err_inner_it] = InnerItSQ(b, psi, k_iter, tau1, tau2, tau3, proxJ, opA, opB, y, options, q);
for jj=1:length(cell_inner_it)
cell_inner_it{jj}=cell_inner_it{jj};
end
all_iterations{j} = cell_inner_it;
if isfield(options,'errFcn')
err_iterations = [err_iterations(:);
err_inner_it(:)];
end
omega = options.nu*(delta + omega);
end
x_final = psi;
y_final = y;
end
function [x_out, y_out, all_iterations, err_iterations] = InnerItSQ(b, x0, k_iter, tau1, tau2, tau3, proxJ, opA, opB, y0, options, q)
xk = x0;
yk = y0;
x_sum = zeros(size(xk));
y_sum = zeros(size(yk));
all_iterations = cell([k_iter,1]);
err_iterations = [];
if isfield(options,'errFcn')
err_iterations = zeros(k_iter,1);
end
if options.display==1
pf = parfor_progress(k_iter);
pfcleanup = onCleanup(@() delete(pf));
end
for k = 1:k_iter
if q==0
xkk = proxJ(xk - tau1*opA(yk, 0), tau1*options.lambda);
ykk = prox_dual( yk + tau2*opA(2*xkk - xk, 1) - tau2*b ,options.lambda, q);
else
z = xk - tau1*opA(yk(1:(end-q)),0) - tau1*opB(yk((end-q+1):end),0);
xkk = proxJ(z, tau1*options.lambda);
z = [tau2*opA(2*xkk - xk, 1); tau3*opB(2*xkk - xk , 1)];
ykk = prox_dual( yk + z - tau2*b ,options.lambda, q);
end
% xkk = proxJ(xk - tau1*opK(yk, 0), tau1*options.lambda);
% ykk = prox_dual( yk + tau2*opK(2*xkk - xk , 1) - tau2*b ,options.lambda, q);
x_sum = x_sum + xkk;
y_sum = y_sum + ykk;
if options.store==1
if mod(options.type,2)==0
all_iterations{k} = x_sum/(k);
else
all_iterations{k} = xkk;
end
end
if isfield(options,'errFcn')
if mod(options.type,2)==0
err_iterations(k) = options.errFcn(x_sum/(k));
else
err_iterations(k) = options.errFcn(xkk);
end
end
xk = xkk;
yk = ykk;
if options.display==1
parfor_progress(pf);
end
end
if options.type==1
x_out = xk;
y_out = yk;
elseif options.type==2
x_out = x_sum/k_iter;
y_out = yk;
elseif options.type==3
x_out = xk;
y_out = y_sum/k_iter;
else
x_out = x_sum/k_iter;
y_out = y_sum/k_iter;
end
end
function y_out = prox_dual(y,rho,q)
y=y(:);
if q==0
n_y = norm(y(:),2) + 1e-43;
y_out = min(1,1/n_y)*y;
else
n_y = norm(y(1:(end-q)),2) + 1e-43;
y_out1 = min(1,1/n_y)*y(1:(end-q));
y_out2 = min(ones(q,1),rho./(abs(y((end-q+1):end))+1e-43)).*y((end-q+1):end);
y_out=[y_out1; y_out2];
end
end