-
Notifications
You must be signed in to change notification settings - Fork 1
/
deformable_conv_layer.py
222 lines (194 loc) · 9.41 KB
/
deformable_conv_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import tensorflow as tf
from tensorflow.keras.layers import Conv2D
class DeformableConvLayer(Conv2D):
def __init__(self,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1),
num_deformable_group=None,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super().__init__(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
kernel_constraint=kernel_constraint,
bias_constraint=bias_constraint,
**kwargs)
self.kernel = None
self.bias = None
self.offset_layer_kernel = None
self.offset_layer_bias = None
if num_deformable_group is None:
num_deformable_group = filters
if filters % num_deformable_group != 0:
raise ValueError('"filters" mod "num_deformable_group" must be zero')
self.num_deformable_group = num_deformable_group
def build(self, input_shape):
input_dim = int(input_shape[-1])
kernel_shape = self.kernel_size + (self.filters * input_dim, 1)
self.kernel = self.add_weight(
name='kernel',
shape=kernel_shape,
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
trainable=True,
dtype=self.dtype)
if self.use_bias:
self.bias = self.add_weight(
name='bias',
shape=(self.filters,),
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
trainable=True,
dtype=self.dtype)
# create offset conv layer
offset_num = self.kernel_size[0] * self.kernel_size[1] * self.num_deformable_group
self.offset_layer_kernel = self.add_weight(
name='offset_layer_kernel',
shape=self.kernel_size + (input_dim, offset_num * 2), # 2 means x and y axis
initializer=tf.zeros_initializer(),
regularizer=self.kernel_regularizer,
trainable=True,
dtype=self.dtype)
self.offset_layer_bias = self.add_weight(
name='offset_layer_bias',
shape=(offset_num * 2,),
initializer=tf.zeros_initializer(),
regularizer=self.bias_regularizer,
trainable=True,
dtype=self.dtype)
self.built = True
def call(self, inputs, training=None, **kwargs):
# get offset, shape [batch_size, out_h, out_w, filter_h, * filter_w * channel_out * 2]
offset = tf.nn.conv2d(inputs,
filters=self.offset_layer_kernel,
strides=[1, *self.strides, 1],
padding=self.padding.upper(),
dilations=[1, *self.dilation_rate, 1])
offset += self.offset_layer_bias
# add padding if needed
inputs = self._pad_input(inputs)
# some length
batch_size =1# int(inputs.get_shape()[0])
channel_in = int(inputs.get_shape()[-1])
in_h, in_w = [int(i) for i in inputs.get_shape()[1: 3]] # input feature map size
out_h, out_w = [int(i) for i in offset.get_shape()[1: 3]] # output feature map size
filter_h, filter_w = self.kernel_size
# get x, y axis offset
offset = tf.reshape(offset, [batch_size, out_h, out_w, -1, 2])
y_off, x_off = offset[:, :, :, :, 0], offset[:, :, :, :, 1]
# input feature map gird coordinates
y, x = self._get_conv_indices([in_h, in_w])
y, x = [tf.expand_dims(i, axis=-1) for i in [y, x]]
y, x = [tf.tile(i, [batch_size, 1, 1, 1, self.num_deformable_group]) for i in [y, x]]
y, x = [tf.reshape(i, [*i.shape[0: 3], -1]) for i in [y, x]]
# y, x = [tf.to_float(i) for i in [y, x]]
y, x = [tf.cast(i, tf.float32) for i in [y, x]]
# add offset
y, x = y + y_off, x + x_off
y = tf.clip_by_value(y, 0, in_h - 1)
x = tf.clip_by_value(x, 0, in_w - 1)
# get four coordinates of points around (x, y)
# y0, x0 = [tf.to_int32(tf.floor(i)) for i in [y, x]]
y0, x0 = [tf.cast(tf.floor(i),tf.int32) for i in [y, x]]
y1, x1 = y0 + 1, x0 + 1
# clip
y0, y1 = [tf.clip_by_value(i, 0, in_h - 1) for i in [y0, y1]]
x0, x1 = [tf.clip_by_value(i, 0, in_w - 1) for i in [x0, x1]]
# get pixel values
indices = [[y0, x0], [y0, x1], [y1, x0], [y1, x1]]
p0, p1, p2, p3 = [DeformableConvLayer._get_pixel_values_at_point(inputs, i) for i in indices]
# cast to float
# x0, x1, y0, y1 = [tf.to_float(i) for i in [x0, x1, y0, y1]]
x0, x1, y0, y1 = [tf.cast(i, tf.float32) for i in [x0, x1, y0, y1]]
# weights
w0 = (y1 - y) * (x1 - x)
w1 = (y1 - y) * (x - x0)
w2 = (y - y0) * (x1 - x)
w3 = (y - y0) * (x - x0)
# expand dim for broadcast
w0, w1, w2, w3 = [tf.expand_dims(i, axis=-1) for i in [w0, w1, w2, w3]]
# bilinear interpolation
pixels = tf.add_n([w0 * p0, w1 * p1, w2 * p2, w3 * p3])
# reshape the "big" feature map
pixels = tf.reshape(pixels, [batch_size, out_h, out_w, filter_h, filter_w, self.num_deformable_group, channel_in])
pixels = tf.transpose(pixels, [0, 1, 3, 2, 4, 5, 6])
pixels = tf.reshape(pixels, [batch_size, out_h * filter_h, out_w * filter_w, self.num_deformable_group, channel_in])
# copy channels to same group
feat_in_group = self.filters // self.num_deformable_group
pixels = tf.tile(pixels, [1, 1, 1, 1, feat_in_group])
pixels = tf.reshape(pixels, [batch_size, out_h * filter_h, out_w * filter_w, -1])
# depth-wise conv
out = tf.nn.depthwise_conv2d(pixels, self.kernel, [1, filter_h, filter_w, 1], 'VALID')
# add the output feature maps in the same group
out = tf.reshape(out, [batch_size, out_h, out_w, self.filters, channel_in])
out = tf.reduce_sum(out, axis=-1)
if self.use_bias:
out += self.bias
return self.activation(out)
def _pad_input(self, inputs):
if self.padding == 'same':
in_shape = inputs.get_shape().as_list()[1: 3]
padding_list = []
for i in range(2):
filter_size = self.kernel_size[i]
dilation = self.dilation_rate[i]
dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1)
same_output = (in_shape[i] + self.strides[i] - 1) // self.strides[i]
valid_output = (in_shape[i] - dilated_filter_size + self.strides[i]) // self.strides[i]
if same_output == valid_output:
padding_list += [0, 0]
else:
p = dilated_filter_size - 1
p_0 = p // 2
padding_list += [p_0, p - p_0]
if sum(padding_list) != 0:
padding = [[0, 0],
[padding_list[0], padding_list[1]], # top, bottom padding
[padding_list[2], padding_list[3]], # left, right padding
[0, 0]]
inputs = tf.pad(inputs, padding)
return inputs
def _get_conv_indices(self, feature_map_size):
feat_h, feat_w = [int(i) for i in feature_map_size[0: 2]]
x, y = tf.meshgrid(tf.range(feat_w), tf.range(feat_h))
x, y = [tf.reshape(i, [1, *i.get_shape(), 1]) for i in [x, y]] # shape [1, h, w, 1]
x, y = [tf.image.extract_patches(i,
[1, *self.kernel_size, 1],
[1, *self.strides, 1],
[1, *self.dilation_rate, 1],
'VALID')
for i in [x, y]] # shape [1, out_h, out_w, filter_h * filter_w]
return y, x
@staticmethod
def _get_pixel_values_at_point(inputs, indices):
y, x = indices
batch, h, w, n = y.get_shape().as_list()[0: 4]
batch_idx = tf.reshape(tf.range(0, batch), (batch, 1, 1, 1))
b = tf.tile(batch_idx, (1, h, w, n))
pixel_idx = tf.stack([b, y, x], axis=-1)
return tf.gather_nd(inputs, pixel_idx)