Skip to content

Latest commit

 

History

History
5 lines (3 loc) · 1.52 KB

2406.09850.md

File metadata and controls

5 lines (3 loc) · 1.52 KB

GradeADreamer: Enhanced Text-to-3D Generation Using Gaussian Splatting and Multi-View Diffusion

Text-to-3D generation has shown promising results, yet common challenges such as the Multi-face Janus problem and extended generation time for high-quality assets. In this paper, we address these issues by introducing a novel three-stage training pipeline called GradeADreamer. This pipeline is capable of producing high-quality assets with a total generation time of under 30 minutes using only a single RTX 3090 GPU. Our proposed method employs a Multi-view Diffusion Model, MVDream, to generate Gaussian Splats as a prior, followed by refining geometry and texture using StableDiffusion. Experimental results demonstrate that our approach significantly mitigates the Multi-face Janus problem and achieves the highest average user preference ranking compared to previous state-of-the-art methods.

文本到三维生成已展示出有希望的结果,但仍存在一些常见挑战,如多面体问题和高质量资产的延长生成时间。在本文中,我们通过引入一个名为GradeADreamer的新型三阶段训练流水线来解决这些问题。这个流水线能够在仅使用一块RTX 3090 GPU的情况下,在30分钟内生成高质量资产。我们提出的方法采用多视图扩散模型(MVDream)生成高斯平涂作为先验,然后使用StableDiffusion细化几何和纹理。实验结果表明,我们的方法显著减轻了多面体问题,并获得了与以往最先进方法相比的最高平均用户偏好排名。