forked from kohpangwei/group_DRO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_expt.py
205 lines (177 loc) · 8.13 KB
/
run_expt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os, csv
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torchvision
from models import model_attributes
from data.data import dataset_attributes, shift_types, prepare_data, log_data
from utils import set_seed, Logger, CSVBatchLogger, log_args
from train import train
def main():
parser = argparse.ArgumentParser()
# Settings
parser.add_argument('-d', '--dataset', choices=dataset_attributes.keys(), required=True)
parser.add_argument('-s', '--shift_type', choices=shift_types, required=True)
# Confounders
parser.add_argument('-t', '--target_name')
parser.add_argument('-c', '--confounder_names', nargs='+')
# Resume?
parser.add_argument('--resume', default=False, action='store_true')
# Label shifts
parser.add_argument('--minority_fraction', type=float)
parser.add_argument('--imbalance_ratio', type=float)
# Data
parser.add_argument('--fraction', type=float, default=1.0)
parser.add_argument('--root_dir', default=None)
parser.add_argument('--reweight_groups', action='store_true', default=False)
parser.add_argument('--augment_data', action='store_true', default=False)
parser.add_argument('--val_fraction', type=float, default=0.1)
# Objective
parser.add_argument('--robust', default=False, action='store_true')
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--generalization_adjustment', default="0.0")
parser.add_argument('--automatic_adjustment', default=False, action='store_true')
parser.add_argument('--robust_step_size', default=0.01, type=float)
parser.add_argument('--use_normalized_loss', default=False, action='store_true')
parser.add_argument('--btl', default=False, action='store_true')
parser.add_argument('--hinge', default=False, action='store_true')
# Model
parser.add_argument(
'--model',
choices=model_attributes.keys(),
default='resnet50')
parser.add_argument('--train_from_scratch', action='store_true', default=False)
# Optimization
parser.add_argument('--n_epochs', type=int, default=4)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--scheduler', action='store_true', default=False)
parser.add_argument('--weight_decay', type=float, default=5e-5)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--minimum_variational_weight', type=float, default=0)
# Misc
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--show_progress', default=False, action='store_true')
parser.add_argument('--log_dir', default='./logs')
parser.add_argument('--log_every', default=50, type=int)
parser.add_argument('--save_step', type=int, default=10)
parser.add_argument('--save_best', action='store_true', default=False)
parser.add_argument('--save_last', action='store_true', default=False)
args = parser.parse_args()
check_args(args)
# BERT-specific configs copied over from run_glue.py
if args.model == 'bert':
args.max_grad_norm = 1.0
args.adam_epsilon = 1e-8
args.warmup_steps = 0
if os.path.exists(args.log_dir) and args.resume:
resume=True
mode='a'
else:
resume=False
mode='w'
## Initialize logs
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
logger = Logger(os.path.join(args.log_dir, 'log.txt'), mode)
# Record args
log_args(args, logger)
set_seed(args.seed)
# Data
# Test data for label_shift_step is not implemented yet
test_data = None
test_loader = None
if args.shift_type == 'confounder':
train_data, val_data, test_data = prepare_data(args, train=True)
elif args.shift_type == 'label_shift_step':
train_data, val_data = prepare_data(args, train=True)
loader_kwargs = {'batch_size':args.batch_size, 'num_workers':4, 'pin_memory':True}
train_loader = train_data.get_loader(train=True, reweight_groups=args.reweight_groups, **loader_kwargs)
val_loader = val_data.get_loader(train=False, reweight_groups=None, **loader_kwargs)
if test_data is not None:
test_loader = test_data.get_loader(train=False, reweight_groups=None, **loader_kwargs)
data = {}
data['train_loader'] = train_loader
data['val_loader'] = val_loader
data['test_loader'] = test_loader
data['train_data'] = train_data
data['val_data'] = val_data
data['test_data'] = test_data
n_classes = train_data.n_classes
log_data(data, logger)
## Initialize model
pretrained = not args.train_from_scratch
if resume:
model = torch.load(os.path.join(args.log_dir, 'last_model.pth'))
d = train_data.input_size()[0]
elif model_attributes[args.model]['feature_type'] in ('precomputed', 'raw_flattened'):
assert pretrained
# Load precomputed features
d = train_data.input_size()[0]
model = nn.Linear(d, n_classes)
model.has_aux_logits = False
elif args.model == 'resnet50':
model = torchvision.models.resnet50(pretrained=pretrained)
d = model.fc.in_features
model.fc = nn.Linear(d, n_classes)
elif args.model == 'resnet34':
model = torchvision.models.resnet34(pretrained=pretrained)
d = model.fc.in_features
model.fc = nn.Linear(d, n_classes)
elif args.model == 'wideresnet50':
model = torchvision.models.wide_resnet50_2(pretrained=pretrained)
d = model.fc.in_features
model.fc = nn.Linear(d, n_classes)
elif args.model == 'bert':
assert args.dataset == 'MultiNLI'
from pytorch_transformers import BertConfig, BertForSequenceClassification
config_class = BertConfig
model_class = BertForSequenceClassification
config = config_class.from_pretrained(
'bert-base-uncased',
num_labels=3,
finetuning_task='mnli')
model = model_class.from_pretrained(
'bert-base-uncased',
from_tf=False,
config=config)
else:
raise ValueError('Model not recognized.')
logger.flush()
## Define the objective
if args.hinge:
assert args.dataset in ['CelebA', 'CUB'] # Only supports binary
def hinge_loss(yhat, y):
# The torch loss takes in three arguments so we need to split yhat
# It also expects classes in {+1.0, -1.0} whereas by default we give them in {0, 1}
# Furthermore, if y = 1 it expects the first input to be higher instead of the second,
# so we need to swap yhat[:, 0] and yhat[:, 1]...
torch_loss = torch.nn.MarginRankingLoss(margin=1.0, reduction='none')
y = (y.float() * 2.0) - 1.0
return torch_loss(yhat[:, 1], yhat[:, 0], y)
criterion = hinge_loss
else:
criterion = torch.nn.CrossEntropyLoss(reduction='none')
if resume:
df = pd.read_csv(os.path.join(args.log_dir, 'test.csv'))
epoch_offset = df.loc[len(df)-1,'epoch']+1
logger.write(f'starting from epoch {epoch_offset}')
else:
epoch_offset=0
train_csv_logger = CSVBatchLogger(os.path.join(args.log_dir, 'train.csv'), train_data.n_groups, mode=mode)
val_csv_logger = CSVBatchLogger(os.path.join(args.log_dir, 'val.csv'), train_data.n_groups, mode=mode)
test_csv_logger = CSVBatchLogger(os.path.join(args.log_dir, 'test.csv'), train_data.n_groups, mode=mode)
train(model, criterion, data, logger, train_csv_logger, val_csv_logger, test_csv_logger, args, epoch_offset=epoch_offset)
train_csv_logger.close()
val_csv_logger.close()
test_csv_logger.close()
def check_args(args):
if args.shift_type == 'confounder':
assert args.confounder_names
assert args.target_name
elif args.shift_type.startswith('label_shift'):
assert args.minority_fraction
assert args.imbalance_ratio
if __name__=='__main__':
main()