Given an integer n
, break it into the sum of k
positive integers, where k >= 2
, and maximize the product of those integers.
Return the maximum product you can get.
Example 1:
Input: n = 2 Output: 1 Explanation: 2 = 1 + 1, 1 × 1 = 1.
Example 2:
Input: n = 10 Output: 36 Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
Constraints:
2 <= n <= 58
Dynamic programming.
class Solution:
def integerBreak(self, n: int) -> int:
dp = [1] * (n + 1)
for i in range(2, n + 1):
for j in range(1, i):
dp[i] = max(dp[i], dp[i - j] * j, (i - j) * j)
return dp[n]
class Solution {
public int integerBreak(int n) {
int[] dp = new int[n + 1];
dp[1] = 1;
for (int i = 2; i <= n; ++i) {
for (int j = 1; j < i; ++j) {
dp[i] = Math.max(Math.max(dp[i], dp[i - j] * j), (i - j) * j);
}
}
return dp[n];
}
}
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n + 1);
dp[1] = 1;
for (int i = 2; i <= n; ++i) {
for (int j = 1; j < i; ++j) {
dp[i] = max(max(dp[i], dp[i - j] * j), (i - j) * j);
}
}
return dp[n];
}
};
func integerBreak(n int) int {
dp := make([]int, n+1)
dp[1] = 1
for i := 2; i <= n; i++ {
for j := 1; j < i; j++ {
dp[i] = max(max(dp[i], dp[i-j]*j), (i-j)*j)
}
}
return dp[n]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}