-
Notifications
You must be signed in to change notification settings - Fork 115
/
polyhedra.scad
820 lines (789 loc) · 44.8 KB
/
polyhedra.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
//////////////////////////////////////////////////////////////////////
// LibFile: polyhedra.scad
// Generate Platonic solids, Archimedian solids, Catalan polyhedra, the trapezohedron, and some stellated polyhedra.
// You can also stellate any of the polyhedra, select polyhedra by their characterics and position objects on polyhedra faces.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/polyhedra.scad>
// FileGroup: Parts
// FileSummary: Platonic, Archimidean, Catalan, and stellated polyhedra
//////////////////////////////////////////////////////////////////////
// CommonCode:
// $fn=96;
// Section: Polyhedra
// Groups entries in "arr" into groups of equal values and returns index lists of those groups
function _unique_groups(m) = [
for (i=[0:1:len(m)-1]) let(
s = search([m[i]], m, 0)[0]
) if (s[0]==i) s
];
// TODO
//
// Use volume info?
// Support choosing a face number down
// Support multiple inspheres/outspheres when appropriate?
// face order for children?
// orient faces so an edge is parallel to the x-axis
//
// Module: regular_polyhedron()
// Synopsis: Creates a regular polyhedron with optional rounding.
// SynTags: Geom
// Topics: Polyhedra, Shapes, Parts
// See Also: regular_polyhedron_info()
// Usage: Selecting a polyhedron
// regular_polyhedron([name],[index=],[type=],[faces=],[facetype=],[hasfaces=],...) [CHILDREN];
// Usage: Controlling the size and position of the polyhedron
// regular_polyhedron(..., [or=|r=|d=],[ir=],[mr=],[side=],[facedown=],[anchor=], ...) [CHILDREN];]
// Usage: Other options that change the polyhedron or handling of children
// regular_polyhedron(..., [draw=], [rounding=], [stellate=], [repeat=], [rotate_children=]) [CHILDREN];
// Usage: options only for the trapezohedron
// regular_polyhedron("trapezohedron", [longside=],[h=], ...) [CHILDREN];
// Description:
// Creates a regular polyhedron with optional rounding. Children are placed on the polyhedron's faces. (Note that this is not attachable.)
// The regular_polyhedron module knows about many different regular and semi-regular polyhedra. You can refer to them
// by name. The complete list with their names appears below in the examples. You can also search the polyhedra
// for ones that meet various critera using `type=`, `faces=`, `facetype=` or `hasfaces=`. This will result in a list of polyhedra in a
// canonical order that might include several options. By default if you give specifications that produce several polyhedra, the first
// one will be returned. You can use the `index=` argument to select others from your list of hits. Examples of polyhedron selection appear
// after the full list of polyhedra below.
// .
// **Selecting the polyhedron:**
// You constrain the polyhedra list by specifying different characteristics, that must all be met
// * `name`: e.g. `"dodecahedron"` or `"pentagonal icositetrahedron"`. The name fully identifies the polyhedron, so no other characteristic should be given.
// * `type`: Options are `"platonic"`, `"archimedean"` and `"catalan"`
// * `faces`: The required number of faces
// * `facetype`: The required face type(s). List of vertex counts for the faces. Exactly the listed types of faces must appear:
// * `facetype = 3`: polyhedron with all triangular faces.
// * `facetype = [5,6]`: polyhedron with only pentagons and hexagons. (Must have both!)
// * hasfaces: The list of vertex counts for faces; at least one listed type must appear:
// * `hasfaces = 3`: polygon has at least one triangular face
// * `hasfaces = [5,6]`: polygon has a hexagonal or a pentagonal face
// .
// The result is a list of selected polyhedra. You then specify `index` to choose which one of the
// remaining polyhedra you want. If you don't give `index` the first one on the list is created.
// Two examples:
// * `faces=12, index=2`: Creates the 3rd solid with 12 faces
// * `type="archimedean", faces=14`: Creates the first archimedean solid with 14 faces (there are 3)
// .
// **Choosing the size of your polyhedron:**
// The default is to create a polyhedron whose smallest edge has length 1. You can specify the
// smallest edge length with the size option. Alternatively you can specify the size of the
// inscribed sphere, midscribed sphere, or circumscribed sphere using `ir`, `mr` and `cr` respectively.
// If you specify `cr=3` then the outermost points of the polyhedron will be 3 units from the center.
// If you specify `ir=3` then the innermost faces of the polyhedron will be 3 units from the center.
// For the platonic solids every face meets the inscribed sphere and every corner touches the
// circumscribed sphere. For the Archimedean solids the inscribed sphere will touch only some of
// the faces and for the Catalan solids the circumscribed sphere meets only some of the corners.
// .
// **Orientation:**
// Orientation is controled by the facedown parameter. Set this to false to get the canonical orientation.
// Set it to true to get the largest face oriented down. If you set it to a number the module searches for
// a face with the specified number of vertices and orients that face down.
// .
// **Rounding:**
// If you specify the rounding parameter the module makes a rounded polyhedron by first creating an
// undersized model and then expanding it with `minkowski()`. This only produces the correct result
// if the in-sphere contacts all of the faces of the polyhedron, which is true for the platonic, the
// catalan solids and the trapezohedra but false for the archimedean solids.
// .
// **Children:**
// The module places children on the faces of the polyhedron. The child coordinate system is
// positioned so that the origin is the center of the face. If `rotate_children` is true (default)
// then the coordinate system is oriented so the z axis is normal to the face, which lies in the xy
// plane. If you give `repeat=true` (default) the children are cycled through to cover all faces.
// With `repeat=false` each child is used once. You can specify `draw=false` to suppress drawing of
// the polyhedron, e.g. to use for `difference()` operations. The module sets various parameters
// you can use in your children (see the side effects list below).
// .
// **Stellation:**
// Technically stellation is an operation of shifting the polyhedron's faces to produce a new shape
// that may have self-intersecting faces. OpenSCAD cannot handle self-intersecting faces, so we
// instead erect a pyramid on each face, a process technically referred to as augmentation. The
// height of the pyramid is given by the `stellate` argument. If `stellate` is `false` or `0` then
// no stellation is performed. Otherwise stellate gives the pyramid height as a multiple of the
// edge length. A negative pyramid height can be used to perform excavation, where a pyramid is
// removed from each face.
// .
// **Special Polyhedra:**
// These can be selected only by name and may require different parameters, or ignore some standard
// parameters.
// * Trapezohedron: a family of solids with an even number of kite shaped sides.
// One example of a trapezohedron is the d10 die, which is a 10 face trapezohedron.
// You must specify exactly two of `side`, `longside`, `h` (or `height`), and `r` (or `d`).
// You cannot create trapezohedron shapes using `mr`, `ir`, or `or`.
// * `side`: Length of the short side.
// * `longside`: Length of the long side that extends to the apex.
// * `h` or `height`: Distance from the center to the apex.
// * `r`: Radius of the polygon that defines the equatorial vertices.
// * `d`: Diameter of the polygon that defines the equatorial vertices.
// .
// * Named stellations: various polyhedra such as three of the four Kepler-Poinsot solids are stellations with
// specific pyramid heights. To make them easier to generate you can specify them by name.
// This is equivalent to giving the name of the appropriate base solid and the magic stellate
// parameter needed to produce that shape. The supported solids are:
// * `"great dodecahedron"`
// * `"small stellated dodecahedron"`
// * `"great stellated dodecahedron"`
// * `"small triambic icosahedron"` (not a Kepler-Poinsot solid)
//
// Arguments:
// name = Name of polyhedron to create.
// ---
// type = Type of polyhedron: "platonic", "archimedean", "catalan".
// faces = Number of faces.
// facetype = Scalar or vector listing required type of faces as vertex count. Polyhedron must have faces of every type listed and no other types.
// hasfaces = Scalar of vector list face vertex counts. Polyhedron must have at least one of the listed types of face.
// index = Index to select from polyhedron list. Default: 0.
// side = Length of the smallest edge of the polyhedron. Default: 1 (if no radius or diameter is given).
// ir = inner radius. Polyhedron is scaled so it has the specified inner radius.
// mr = middle radius. Polyhedron is scaled so it has the specified middle radius.
// or / r / d = outer radius. Polyhedron is scaled so it has the specified outer radius.
// anchor = Side of the origin to anchor to. The bounding box of the polyhedron is aligned as specified. Default: `CENTER`
// facedown = If false display the solid in native orientation. If true orient it with a largest face down. If set to a vertex count, orient it so a face with the specified number of vertices is down. Default: true.
// rounding = Specify a rounding radius for the shape. Note that depending on $fn the dimensions of the shape may have small dimensional errors.
// repeat = If true then repeat the children to fill all the faces. If false use only the available children and stop. Default: true.
// draw = If true then draw the polyhedron. If false, draw the children but not the polyhedron. Default: true.
// rotate_children = If true then orient children normal to their associated face. If false orient children to the parent coordinate system. Default: true.
// stellate = Set to a number to erect a pyramid of that height on every face of your polyhedron. The height is a multiple of the side length. Default: false.
// longside = Specify the long side length for a trapezohedron. Invalid for other shapes.
// h = Specify the height of the apex for a trapezohedron. Invalid for other shapes.
//
// Side Effects:
// `$faceindex` - Index number of the face
// `$face` - Coordinates of the face (2d if rotate_children==true, 3d if not)
// `$center` - Face center in the child coordinate system
//
// Examples: All of the available polyhedra by name in their native orientation
// regular_polyhedron("tetrahedron", facedown=false);
// regular_polyhedron("cube", facedown=false);
// regular_polyhedron("octahedron", facedown=false);
// regular_polyhedron("dodecahedron", facedown=false);
// regular_polyhedron("icosahedron", facedown=false);
// regular_polyhedron("truncated tetrahedron", facedown=false);
// regular_polyhedron("truncated octahedron", facedown=false);
// regular_polyhedron("truncated cube", facedown=false);
// regular_polyhedron("truncated icosahedron", facedown=false);
// regular_polyhedron("truncated dodecahedron", facedown=false);
// regular_polyhedron("cuboctahedron", facedown=false);
// regular_polyhedron("icosidodecahedron", facedown=false);
// regular_polyhedron("rhombicuboctahedron", facedown=false);
// regular_polyhedron("rhombicosidodecahedron", facedown=false);
// regular_polyhedron("truncated cuboctahedron", facedown=false);
// regular_polyhedron("truncated icosidodecahedron", facedown=false);
// regular_polyhedron("snub cube", facedown=false);
// regular_polyhedron("snub dodecahedron", facedown=false);
// regular_polyhedron("triakis tetrahedron", facedown=false);
// regular_polyhedron("tetrakis hexahedron", facedown=false);
// regular_polyhedron("triakis octahedron", facedown=false);
// regular_polyhedron("pentakis dodecahedron", facedown=false);
// regular_polyhedron("triakis icosahedron", facedown=false);
// regular_polyhedron("rhombic dodecahedron", facedown=false);
// regular_polyhedron("rhombic triacontahedron", facedown=false);
// regular_polyhedron("deltoidal icositetrahedron", facedown=false);
// regular_polyhedron("deltoidal hexecontahedron", facedown=false);
// regular_polyhedron("disdyakis dodecahedron", facedown=false);
// regular_polyhedron("disdyakis triacontahedron", facedown=false);
// regular_polyhedron("pentagonal icositetrahedron", facedown=false);
// regular_polyhedron("pentagonal hexecontahedron", facedown=false);
// regular_polyhedron("trapezohedron",faces=10, side=1, longside=2.25, facedown=false);
// regular_polyhedron("great dodecahedron");
// regular_polyhedron("small stellated dodecahedron");
// regular_polyhedron("great stellated dodecahedron");
// regular_polyhedron("small triambic icosahedron");
// Example: Third Archimedean solid
// regular_polyhedron(type="archimedean", index=2);
// Example(Med): Solids that have at least one face with either 8 vertices or 10 vertices
// N = len(regular_polyhedron_info("index set", hasfaces=[8,10]));
// for(i=[0:N-1]) right(3*i)
// regular_polyhedron(hasfaces=[8,10], index=i, mr=1);
// Example(Big): Solids that include a quadrilateral face
// N = len(regular_polyhedron_info("index set", hasfaces=4));
// for(i=[0:N-1]) right(3*i)
// regular_polyhedron(hasfaces=4, index=i, mr=1);
// Example(Med): Solids with only quadrilateral faces
// N = len(regular_polyhedron_info("index set", facetype=4));
// for(i=[0:N-1]) right(3*i)
// regular_polyhedron(facetype=4, index=i, mr=1);
// Example: Solids that have both pentagons and hexagons and no other face types
// N = len(regular_polyhedron_info("index set", facetype=[5,6]));
// for(i=[0:N-1]) right(3*i)
// regular_polyhedron(facetype=[5,6], index=i, mr=1);
// Example: Rounded octahedron
// regular_polyhedron("octahedron", side=1, rounding=.2);
// Example: Rounded catalon solid
// regular_polyhedron("rhombic dodecahedron", side=1, rounding=0.2);
// Example(Med): Rounded Archimedean solid compared to unrounded version. The small faces are shifted back from their correct position.
// %regular_polyhedron(type="archimedean", mr=1, rounding=0);
// regular_polyhedron(type="archimedean", mr=1, rounding=0.3);
// Example: Two children are distributed arbitrarily over the faces
// regular_polyhedron(faces=12,index=2,repeat=true) {
// color("red") sphere(r=.1);
// color("green") sphere(r=.1);
// }
// Example(FlatSpin,VPD=100): Difference the children from the polyhedron; children depend on $faceindex
// difference(){
// regular_polyhedron("tetrahedron", side=25);
// regular_polyhedron("tetrahedron", side=25,draw=false)
// down(.3) linear_extrude(height=1)
// text(str($faceindex),halign="center",valign="center");
// }
// Example(Big): With `rotate_children` you can control direction of the children.
// regular_polyhedron(name="tetrahedron", anchor=UP, rotate_children=true)
// cylinder(r=.1, h=.5);
// right(2) regular_polyhedron(name="tetrahedron", anchor=UP, rotate_children=false)
// cylinder(r=.1, h=.5);
// Example(FlatSpin,Med,VPD=15): Using `$face` you can have full control of the construction of your children. This example constructs the Great Icosahedron, the one Kepler-Poinsot solid that cannot be made directly with {{regular_polyhedron()}}.
// module makestar(pts) { // Make a star from a point list
// polygon(
// [
// for(i=[0:len(pts)-1]) let(
// p0=select(pts,i),
// p1=select(pts,i+1),
// center=(p0+p1)/2,
// v=sqrt(7/4-PHI)*(p1-p0)
// ) each [p0, [v.y+center.x, -v.x+center.y]]
// ]
// );
// }
// regular_polyhedron("dodecahedron", side=1, repeat=true)
// linear_extrude(scale=0, height=sqrt((5+2*sqrt(5))/5)) makestar($face);
// Example(Med): The spheres are all radius 1 and the octahedra are sized to match the in-sphere, mid-sphere and out-sphere. The sphere size is slightly adjusted for the in-sphere and out-sphere so you can see the relationship: the sphere is tangent to the faces for the former and the corners poke out for the latter. Note also the difference in the size of the three octahedra.
// sphere(r=1.005);
// %regular_polyhedron("octahedron", ir=1, facedown=false);
// right(3.5) {
// sphere(r=1);
// %regular_polyhedron("octahedron", mr=1, facedown=false);
// }
// right(6.5) {
// %sphere(r=.95); // Slightly undersized sphere means the points poke out a bit
// regular_polyhedron("octahedron", or=1,facedown=false);
// }
// Example(Med): For the Archimdean solids the in-sphere does not touch all of the faces, as shown by this example, but the circumscribed sphere meets every vertex. (This explains the problem for rounding over these solids because the rounding method uses the in-sphere.)
// sphere(r=1.005);
// %regular_polyhedron("snub dodecahedron", ir=1, facedown=false);
// right(3) {
// sphere(r=1);
// %regular_polyhedron("snub dodecahedron", mr=1, facedown=false);
// }
// right(6) {
// %sphere(r=.99);
// regular_polyhedron("snub dodecahedron", or=1,facedown=false);
// }
// Example(Med): For a Catalan solid the in-sphere touches every face but the circumscribed sphere only touches some vertices.
// sphere(r=1.002);
// %regular_polyhedron("pentagonal hexecontahedron", ir=1, facedown=false);
// right(3) {
// sphere(r=1);
// %regular_polyhedron("pentagonal hexecontahedron", mr=1, facedown=false);
// }
// right(6) {
// %sphere(r=.98);
// regular_polyhedron("pentagonal hexecontahedron", or=1,facedown=false);
// }
// Example: Stellate an Archimedian solid, which has mixed faces
// regular_polyhedron("truncated icosahedron",stellate=1.5,or=1);
// Example: Stellate a Catalan solid where faces are not regular
// regular_polyhedron("triakis tetrahedron",stellate=0.5,or=1);
module regular_polyhedron(
name=undef,
index=undef,
type=undef,
faces=undef,
facetype=undef,
hasfaces=undef,
side=undef,
ir=undef,
mr=undef,
or=undef,
r=undef,
d=undef,
anchor=CENTER,
rounding=0,
repeat=true,
facedown=true,
draw=true,
rotate_children=true,
stellate = false,
longside=undef, // special parameter for trapezohedron
h=undef,height=undef // special parameter for trapezohedron
) {
dummy=assert(is_num(rounding) && rounding>=0, "'rounding' must be nonnegative");
entry = regular_polyhedron_info(
"fullentry", name=name, index=index,
type=type, faces=faces, facetype=facetype,
hasfaces=hasfaces, side=side,
ir=ir, mr=mr, or=or,
r=r, d=d,
anchor=anchor,
facedown=facedown,
stellate=stellate,
longside=longside, h=h, height=height
);
assert(len(entry)>0, "No polyhedra meet your specification");
scaled_points = entry[0];
translation = entry[1];
face_triangles = entry[2];
faces = entry[3];
face_normals = entry[4];
in_radius = entry[5];
translate(translation){
if (draw){
if (rounding==0)
polyhedron(scaled_points, faces = face_triangles);
else {
fn = segs(rounding);
rounding = rounding/cos(180/fn);
adjusted_scale = 1 - rounding / in_radius;
minkowski(){
sphere(r=rounding, $fn=fn);
polyhedron(adjusted_scale*scaled_points, faces = face_triangles);
}
}
}
if ($children>0) {
maxrange = repeat ? len(faces)-1 : $children-1;
for(i=[0:1:maxrange]) {
// Would like to orient so an edge (longest edge?) is parallel to x axis
facepts = select(scaled_points, faces[i]);
$center = -mean(facepts);
cfacepts = move($center, p=facepts);
$face = rotate_children
? path2d(frame_map(z=face_normals[i], x=facepts[0]-facepts[1], reverse=true, p=cfacepts))
: cfacepts;
$faceindex = i;
translate(-$center)
if (rotate_children) {
frame_map(z=face_normals[i], x=facepts[0]-facepts[1])
children(i % $children);
} else {
children(i % $children);
}
}
}
}
}
/////////////////////////////////////////////////////////////////////////////
//
// Some internal functions used to generate polyhedra data
//
// All permutations and even permutations of three items
//
function _even_perms(v) = [v, [v[2], v[0], v[1]], [v[1],v[2],v[0]]];
function _all_perms(v) = [v, [v[2], v[0], v[1]], [v[1],v[2],v[0]], [v[1],v[0],v[2]],[v[2],v[1],v[0]],[v[0],v[2],v[1]]];
//
// Point reflections across all planes. In the unconstrained case, this means one point becomes 8 points.
//
// sign=="even" means an even number of minus signs (odd number of plus signs)
// sign=="odd" means an odd number of minus signs (even number of plus signs)
//
function _point_ref(points, sign="both") =
unique([
for(i=[-1,1],j=[-1,1],k=[-1,1])
if (sign=="both" || sign=="even" && i*j*k>0 || sign=="odd" && i*j*k<0)
each [for(point=points) v_mul(point,[i,j,k])]
]);
//
_tribonacci=(1+4*cosh(acosh(2+3/8)/3))/3;
//
/////////////////////////////////////////////////////////////////////////////
//
// Polyhedra data table.
// The polyhedra information is from Wikipedia and http://dmccooey.com/polyhedra/
//
_polyhedra_ = [
// Platonic Solids
["tetrahedron", "platonic", 4,[3], 2*sqrt(2), sqrt(6)/12, sqrt(2)/4, sqrt(6)/4, 1/6/sqrt(2),
_point_ref([[1,1,1]], sign="even")],
["cube", "platonic", 6, [4], 2, 1/2, 1/sqrt(2), sqrt(3)/2, 1,
_point_ref([[1,1,1]])],
["octahedron", "platonic", 8, [3], sqrt(2), sqrt(6)/6, 1/2, sqrt(2)/2, sqrt(2)/3,
_point_ref(_even_perms([1,0,0]))],
["dodecahedron", "platonic", 12, [5], 2/PHI, sqrt(5/2+11*sqrt(5)/10)/2, (3+sqrt(5))/4, sqrt(3)*PHI/2, (15+7*sqrt(5))/4,
_point_ref(concat([[1,1,1]],_even_perms([0,PHI,1/PHI])))],
["icosahedron", "platonic", 20, [3], 2, PHI*PHI/2/sqrt(3), cos(36), sin(72), 5*(3+sqrt(5))/12,
_point_ref(_even_perms([0,1,PHI]))],
// Archimedian Solids, listed in order by Wenniger number, W6-W18
["truncated tetrahedron", "archimedean", 8,[6,3], sqrt(8), sqrt(6)/4, 3*sqrt(2)/4, sqrt(11/8), 23*sqrt(2)/12,
_point_ref(_all_perms([1,1,3]),sign="even")],
["truncated octahedron", "archimedean", 14, [6,4], sqrt(2), sqrt(6)/2, 1.5, sqrt(10)/2, 8*sqrt(2),
_point_ref(_all_perms([0,1,2]))],
["truncated cube", "archimedean", 14, [8,3], 2*(sqrt(2)-1), (1+sqrt(2))/2, 1+sqrt(2)/2, sqrt(7+4*sqrt(2))/2, 7+14*sqrt(2)/3,
_point_ref(_all_perms([1,1,sqrt(2)-1]))],
["truncated icosahedron", "archimedean", 32, [6, 5], 2, (3*sqrt(3)+sqrt(15))/4, 3*PHI/2, sqrt(58+18*sqrt(5))/4, (125+43*sqrt(5))/4,
_point_ref(concat(
_even_perms([0,1,3*PHI]),
_even_perms([1,2+PHI,2*PHI]),
_even_perms([PHI,2,PHI*PHI*PHI])
))],
["truncated dodecahedron", "archimedean", 32, [10, 3], 2*PHI-2, sqrt(7+11*PHI)/2, (3*PHI+1)/2,sqrt(11+PHI*15)/2, 5*(99+47*sqrt(5))/12,
_point_ref(concat(
_even_perms([0,1/PHI, 2+PHI]),
_even_perms([1/PHI,PHI,2*PHI]),
_even_perms([PHI,2,PHI+1])
))],
["cuboctahedron", "archimedean", 14, [4,3], sqrt(2), sqrt(2)/2, sqrt(3)/2, 1, 5*sqrt(2)/3,
_point_ref(_all_perms([1,1,0]))],
["icosidodecahedron", "archimedean", 32, [5,3], 1, sqrt(5*(5+2*sqrt(5)))/5,sqrt(5+2*sqrt(5))/2, PHI, (14+17*PHI)/3,
_point_ref(concat(_even_perms([0,0,PHI]),_even_perms([1/2,PHI/2,PHI*PHI/2])))],
["rhombicuboctahedron", "archimedean", 26, [4, 3], 2, (1+sqrt(2))/2, sqrt(2*(2+sqrt(2)))/2, sqrt(5+2*sqrt(2))/2, 4+10*sqrt(2)/3,
_point_ref(_even_perms([1,1,1+sqrt(2)]))],
["rhombicosidodecahedron", "archimedean", 62, [5,4,3], 2, 3/10*sqrt(15+20*PHI), sqrt(3/2+2*PHI), sqrt(8*PHI+7)/2, (31+58*PHI)/3,
_point_ref(concat(
_even_perms([1,1,PHI*PHI*PHI]),
_even_perms([PHI*PHI,PHI,2*PHI]),
_even_perms([2+PHI,0,PHI*PHI])
))],
["truncated cuboctahedron", "archimedean", 26, [8, 6, 4], 2, (1+2*sqrt(2))/2, sqrt(6*(2+sqrt(2)))/2, sqrt(13+6*sqrt(2))/2, (22+14*sqrt(2)),
_point_ref(_all_perms([1,1+sqrt(2), 1+2*sqrt(2)]))],
["truncated icosidodecahedron", "archimedean", 62, [10,6,4], 2*PHI - 2, sqrt(15/4+5*PHI),sqrt(9/2+6*PHI),sqrt(19/4+6*PHI), 95+50*sqrt(5),
_point_ref(concat(
_even_perms([1/PHI,1/PHI,3+PHI]),
_even_perms([2/PHI,PHI,1+2*PHI]),
_even_perms([1/PHI,PHI*PHI,3*PHI-1]),
_even_perms([2*PHI-1,2,2+PHI]),
_even_perms([PHI,3,2*PHI])
))],
["snub cube", "archimedean", 38, [4,3], 1.60972,1.14261350892596209,1.24722316799364325, 1.34371337374460170,
sqrt((613*_tribonacci+203)/(9*(35*_tribonacci-62))),
concat(
_point_ref(_even_perms([1,1/_tribonacci,_tribonacci]), sign="odd"),
_point_ref(_even_perms([1,_tribonacci,1/_tribonacci]), sign="even")
)],
["snub dodecahedron", "archimedean", 92, [5, 3], 1, 1.98091594728184,2.097053835252087,2.155837375115, 37.61664996273336,
concat(
_point_ref(_even_perms([0.374821658114562,0.330921024729844,2.097053835252088]), sign="odd"),
_point_ref(_even_perms([0.192893711352359,1.249503788463027,1.746186440985827]), sign="odd"),
_point_ref(_even_perms([1.103156835071754,0.847550046789061,1.646917940690374]), sign="odd"),
_point_ref(_even_perms([0.567715369466922,0.643029605914072,1.977838965420219]), sign="even"),
_point_ref(_even_perms([1.415265416255982,0.728335176957192,1.454024229338015]), sign="even")
)],
// Catalan Solids, the duals to the Archimedean solids, listed in the corresponding order
["triakis tetrahedron","catalan", 12, [3], 9/5, 5*sqrt(22)/44, 5*sqrt(2)/12, 5*sqrt(6)/12, 25*sqrt(2)/36,
concat(
_point_ref([9*sqrt(2)/20*[1,1,1]],sign="even"),
_point_ref([3*sqrt(2)/4*[1,1,1]],sign="odd")
)],
["tetrakis hexahedron", "catalan", 24, [3], 1, 2/sqrt(5), 2*sqrt(2)/3, 2/sqrt(3), 32/9,
_point_ref(concat([[2/3,2/3,2/3]],_even_perms([1,0,0])))],
["triakis octahedron", "catalan", 24, [3], 2, sqrt(17*(23+16*sqrt(2)))/34, 1/2+sqrt(2)/4,(1+sqrt(2))/2,3/2+sqrt(2),
_point_ref(concat([[1,1,1]],_even_perms([1+sqrt(2),0,0])))],
["pentakis dodecahedron", "catalan", 60, [3], 1,sqrt(477/436+97*sqrt(5)/218), sqrt(5)/4+11/12, sqrt(7/4+sqrt(5)/3), 125*sqrt(5)/36+205/36,
_point_ref(concat(
_even_perms([0,(5-PHI)/6, PHI/2+2/3]),
_even_perms([0,(PHI+1)/2,PHI/2]),[(4*PHI-1)/6 * [1,1,1]]
))],
["triakis icosahedron", "catalan", 60, [3], 1, sqrt((139+199*PHI)/244), (8*PHI+1)/10, sqrt(13/8+19/8/sqrt(5)), (13*PHI+3)/2,
_point_ref(concat(
_even_perms([(PHI+7)/10, 0, (8*PHI+1)/10]),
_even_perms([0, 1/2, (PHI+1)/2]),[PHI/2*[1,1,1]]
))],
["rhombic dodecahedron", "catalan", 12, [4], sqrt(3), sqrt(2/3), 2*sqrt(2)/3, 2/sqrt(3), 16*sqrt(3)/9,
_point_ref(concat([[1,1,1]], _even_perms([2,0,0])))],
["rhombic triacontahedron", "catalan", 30,[4], 1, sqrt(1+2/sqrt(5)), 1+1/sqrt(5), (1+sqrt(5))/2, 4*sqrt(5+2*sqrt(5)),
concat(
_point_ref(_even_perms([0,sqrt(1+2/sqrt(5)), sqrt((5+sqrt(5))/10)])),
_point_ref(_even_perms([0,sqrt(2/(5+sqrt(5))), sqrt(1+2/sqrt(5))])),
_point_ref([sqrt((5+sqrt(5))/10)*[1,1,1]])
)],
["deltoidal icositetrahedron", "catalan", 24, [4], 2*sqrt(10-sqrt(2))/7, 7*sqrt((7+4*sqrt(2))/(34 * (10-sqrt(2)))),
7*sqrt(2*(2+sqrt(2)))/sqrt(10-sqrt(2))/4, 7*sqrt(2)/sqrt(10-sqrt(2))/2,
(14+21*sqrt(2))/sqrt(10-sqrt(2)),
_point_ref(concat(
_even_perms([0,1,1]), _even_perms([sqrt(2),0,0]),
_even_perms((4+sqrt(2))/7*[1,1,1])
))],
["deltoidal hexecontahedron", "catalan", 60, [4], sqrt(5*(85-31*sqrt(5)))/11, sqrt(571/164+1269/164/sqrt(5)), 5/4+13/4/sqrt(5),
sqrt(147+65*sqrt(5))/6, sqrt(29530+13204*sqrt(5))/3,
_point_ref(concat(
_even_perms([0,0,sqrt(5)]),
_even_perms([0,(15+sqrt(5))/22, (25+9*sqrt(5))/22]),
_even_perms([0,(5+3*sqrt(5))/6, (5+sqrt(5))/6]),
_even_perms([(5-sqrt(5))/4, sqrt(5)/2, (5+sqrt(5))/4]),
[(5+4*sqrt(5))/11*[1,1,1]]
))],
["disdyakis dodecahedron", "catalan", 48, [3], 1,sqrt(249/194+285/194/sqrt(2)) ,(2+3*sqrt(2))/4, sqrt(183/98+213/98/sqrt(2)),
sqrt(6582+4539*sqrt(2))/7,
_point_ref(concat(
_even_perms([sqrt(183/98+213/98/sqrt(2)),0,0]),
_even_perms(sqrt(3+3/sqrt(2))/2 * [1,1,0]),[7/sqrt(6*(10-sqrt(2)))*[1,1,1]]
))],
["disdyakis triacontahedron","catalan", 120, [3], sqrt(15*(85-31*sqrt(5)))/11, sqrt(3477/964+7707/964/sqrt(5)), 5/4+13/4/sqrt(5),
sqrt(441+195*sqrt(5))/10,sqrt(17718/5+39612/5/sqrt(5)),
_point_ref(concat(
_even_perms([0,0,3*(5+4*sqrt(5))/11]),
_even_perms([0,(5-sqrt(5))/2,(5+sqrt(5))/2]),
_even_perms([0,(15+9*sqrt(5))/10,3*(5+sqrt(5))/10]),
_even_perms([3*(15+sqrt(5))/44,3*(5+4*sqrt(5))/22, (75+27*sqrt(5))/44]), [sqrt(5)*[1,1,1]]
))],
["pentagonal icositetrahedron","catalan",24, [5], 0.593465355971, 1.950681331784, 2.1015938932963, 2.29400105368695, 35.6302020120713,
concat(
_point_ref(_even_perms([0.21879664300048044,0.740183741369857,1.0236561781126901]),sign="even"),
_point_ref(_even_perms([0.21879664300048044,1.0236561781126901,0.740183741369857]),sign="odd"),
_point_ref(_even_perms([1.3614101519264425,0,0])),
_point_ref([0.7401837413698572*[1,1,1]])
)],
["pentagonal hexecontahedron", "catalan", 60,[5], 0.58289953474498, 3.499527848905764,3.597624822551189,3.80854772878239, 189.789852066885,
concat(
_point_ref(_even_perms([0.192893711352359,0.218483370127321,2.097053835252087]), sign="even"),
_point_ref(_even_perms([0,0.7554672605165955,1.9778389654202186])),
_point_ref(_even_perms([0,1.888445389283669154,1.1671234364753339])),
_point_ref(_even_perms([0.56771536946692131,0.824957552676275846,1.8654013108176956657]),sign="odd"),
_point_ref(_even_perms([0.37482165811456229,1.13706613386050418,1.746186440985826345]), sign="even"),
_point_ref(_even_perms([0.921228888309550,0.95998770139158,1.6469179406903744]),sign="even"),
_point_ref(_even_perms([0.7283351769571914773,1.2720962825758121,1.5277030708585051]),sign="odd"),
_point_ref([1.222371704903623092*[1,1,1]])
)],
];
_stellated_polyhedra_ = [
["great dodecahedron", "icosahedron", -sqrt(5/3-PHI)],
["small stellated dodecahedron", "dodecahedron", sqrt((5+2*sqrt(5))/5)],
["great stellated dodecahedron", "icosahedron", sqrt(2/3+PHI)],
["small triambic icosahedron", "icosahedron", sqrt(3/5) - 1/sqrt(3)]
];
// Function: regular_polyhedron_info()
// Synopsis: Returns info used to create a regular polyhedron.
// Topics: Polyhedra, Shapes, Parts
// See Also: regular_polyhedron()
//
// Usage:
// info = regular_polyhedron_info(info, ...);
//
// Description:
// Calculate characteristics of regular polyhedra or the selection set for regular_polyhedron().
// Invoke with the same polyhedron selection and size arguments used by {{regular_polyhedron()}} and use the `info` argument to
// request the desired return value. Set `info` to:
// * `"vnf"`: vnf for the selected polyhedron
// * `"vertices"`: vertex list for the selected polyhedron
// * `"faces"`: list of faces for the selected polyhedron, where each entry on the list is a list of point index values to be used with the vertex list
// * `"face normals"`: list of normal vectors for each face
// * `"in_radius"`: in-sphere radius for the selected polyhedron
// * `"mid_radius"`: mid-sphere radius for the selected polyhedron
// * `"out_radius"`: circumscribed sphere radius for the selected polyhedron
// * `"index set"`: index set selected by your specifications; use its length to determine the valid range for `index`.
// * `"face vertices"`: number of vertices on the faces of the selected polyhedron (always a list)
// * `"edge length"`: length of the smallest edge of the selected polyhedron
// * `"center"`: center for the polyhedron
// * `"type"`: polyhedron type, one of "platonic", "archimedean", "catalan", or "trapezohedron"
// * `"name"`: name of selected polyhedron
// If you specify an impossible selection of polyhedrons, then `[]` is returned.
//
// Arguments:
// info = Desired information to return for the polyhedron
// name = Name of polyhedron to create.
// ---
// type = Type of polyhedron: "platonic", "archimedean", "catalan".
// faces = Number of faces.
// facetype = Scalar or vector listing required type of faces as vertex count. Polyhedron must have faces of every type listed and no other types.
// hasfaces = Scalar of vector list face vertex counts. Polyhedron must have at least one of the listed types of face.
// index = Index to select from polyhedron list. Default: 0.
// side = Length of the smallest edge of the polyhedron. Default: 1 (if no radius or diameter is given).
// or / r / d = outer radius. Polyhedron is scaled so it has the specified outer radius or diameter.
// mr = middle radius. Polyhedron is scaled so it has the specified middle radius.
// ir = inner radius. Polyhedron is scaled so it has the specified inner radius.
// anchor = Side of the origin to anchor to. The bounding box of the polyhedron is aligned as specified. Default: `CENTER`
// facedown = If false display the solid in native orientation. If true orient it with a largest face down. If set to a vertex count, orient it so a face with the specified number of vertices is down. Default: true.
// stellate = Set to a number to erect a pyramid of that height on every face of your polyhedron. The height is a multiple of the side length. Default: false.
// longside = Specify the long side length for a trapezohedron. Invalid for other shapes.
// h = Specify the height of the apex for a trapezohedron. Invalid for other shapes.
function regular_polyhedron_info(
info=undef, name=undef,
index=undef, type=undef,
faces=undef, facetype=undef,
hasfaces=undef, side=undef,
ir=undef, mr=undef, or=undef,
r=undef, d=undef,
anchor=CENTER,
facedown=true, stellate=false,
longside=undef, h=undef, height=undef // special parameters for trapezohedron
) = let(
argcount = num_defined([side,ir,mr,or,r,d])
)
assert(name=="trapezohedron" || argcount<=1, "You must specify only one of 'side', 'ir', 'mr', 'or', 'r', and 'd'")
assert(name!="trapezohedron" || num_defined([ir,mr,or])==0, "Trapezohedron does not accept 'ir', 'mr' or 'or'")
let(
//////////////////////
//Index values into the _polyhedra_ array
//
pname = 0, // name of polyhedron
class = 1, // class name (e.g. platonic, archimedean)
facecount = 2, // number of faces
facevertices = 3, // vertices on the faces, e.g. [3] for all triangles, [3,4] for triangles and squares
edgelen = 4, // length of the edge for the vertex list in the database
in_radius = 5, // in radius for unit polyhedron (shortest side 1)
mid_radius = 6, // mid radius for unit polyhedron
out_radius = 7, // out radius for unit polyhedron
volume = 8, // volume of unit polyhedron (data not validated, not used right now)
vertices = 9, // vertex list (in arbitrary order)
//////////////////////
or = get_radius(r=r,r1=or,d=d),
stellate_index = search([name], _stellated_polyhedra_, 1, 0)[0],
name = stellate_index==[] ? name : _stellated_polyhedra_[stellate_index][1],
stellate = stellate_index==[] ? stellate : _stellated_polyhedra_[stellate_index][2],
indexlist = (
name=="trapezohedron" ? [0] : [ // dumy list of one item
for(i=[0:1:len(_polyhedra_)-1]) (
if (
(is_undef(name) || _polyhedra_[i][pname]==name) &&
(is_undef(type) || _polyhedra_[i][class]==type) &&
(is_undef(faces) || _polyhedra_[i][facecount]==faces) &&
(
is_undef(facetype) || 0==compare_lists(
is_list(facetype)? reverse(sort(facetype)) : [facetype],
_polyhedra_[i][facevertices]
)
) &&
(is_undef(hasfaces) || any([for (ft=hasfaces) in_list(ft,_polyhedra_[i][facevertices])]))
) i
)
]
)
)
len(indexlist)==0 ? []
:
let(validindex = is_undef(index) || (index>=0 && index<len(indexlist)))
assert(validindex, str(
len(indexlist),
" polyhedra meet specifications, so 'index' must be in [0,",
len(indexlist)-1,
"], but 'index' is ",
index
))
let(
entry = (
name == "trapezohedron"? (
_trapezohedron(faces=faces, side=side, longside=longside, h=h, r=r, d=d, height=height)
) : (
_polyhedra_[!is_undef(index)?
indexlist[index] :
indexlist[0]]
)
),
valid_facedown = is_bool(facedown) || in_list(facedown, entry[facevertices])
)
assert(name == "trapezohedron" || num_defined([longside,h,height])==0, "The 'longside', 'h' and 'height' parameters are only allowed with trapezohedrons")
assert(valid_facedown,str("'facedown' set to ",facedown," but selected polygon only has faces with size(s) ",entry[facevertices]))
let(
scalefactor = (
name=="trapezohedron" ? 1 : (
argcount == 0? 1 // Default side=1 if no size info given
: is_def(side) ? side
: is_def(ir) ? ir/entry[in_radius]
: is_def(mr) ? mr/entry[mid_radius]
: or/entry[out_radius]
) / entry[edgelen]
),
face_triangles = hull(entry[vertices]),
faces_normals_vertices = _stellate_faces(
entry[edgelen], stellate, entry[vertices],
entry[facevertices]==[3]?
[face_triangles, [for(face=face_triangles) _facenormal(entry[vertices],face)]] :
_full_faces(entry[vertices], face_triangles)
),
faces = faces_normals_vertices[0],
faces_vertex_count = [for(face=faces) len(face)],
facedown = facedown == true ? (stellate==false? entry[facevertices][0] : 3) : facedown,
down_direction = facedown == false? [0,0,-1] :
faces_normals_vertices[1][search(facedown, faces_vertex_count)[0]],
scaled_points = scalefactor * rot(p=faces_normals_vertices[2], from=down_direction, to=[0,0,-1]),
bounds = pointlist_bounds(scaled_points),
boundtable = [bounds[0], [0,0,0], bounds[1]],
translation = [for(i=[0:2]) -boundtable[1+anchor[i]][i]],
face_normals = rot(p=faces_normals_vertices[1], from=down_direction, to=[0,0,-1]),
radius_scale = name=="trapezohedron" ? 1 : scalefactor * entry[edgelen]
)
info == "fullentry" ? [
scaled_points,
translation,
stellate ? faces : face_triangles,
faces,
face_normals,
radius_scale*entry[in_radius]
] :
info == "vnf" ? [move(translation,p=scaled_points), faces] :
info == "vertices" ? move(translation,p=scaled_points) :
info == "faces" ? faces :
info == "face normals" ? face_normals :
info == "in_radius" ? radius_scale * entry[in_radius] :
info == "mid_radius" ? radius_scale * entry[mid_radius] :
info == "out_radius" ? radius_scale * entry[out_radius] :
info == "index set" ? indexlist :
info == "face vertices" ? (stellate==false? entry[facevertices] : [3]) :
info == "edge length" ? scalefactor * entry[edgelen] :
info == "center" ? translation :
info == "type" ? entry[class] :
info == "name" ? entry[pname] :
assert(false, str("Unknown info type '",info,"' requested"));
function _stellate_faces(scalefactor,stellate,vertices,faces_normals) =
(stellate == false || stellate == 0)? concat(faces_normals,[vertices]) :
let(
faces = [for(face=faces_normals[0]) select(face,hull(select(vertices,face)))],
direction = [for(i=[0:1:len(faces)-1]) _facenormal(vertices, faces[i])*faces_normals[1][i]>0 ? 1 : -1],
maxvertex = len(vertices),
newpts = [for(i=[0:1:len(faces)-1]) mean(select(vertices,faces[i]))+stellate*scalefactor*faces_normals[1][i]],
newfaces = [for(i=[0:1:len(faces)-1], j=[0:len(faces[i])-1]) concat([i+maxvertex],select(faces[i], [j, j+direction[i]]))],
allpts = concat(vertices, newpts),
normals = [for(face=newfaces) _facenormal(allpts,face)]
) [newfaces, normals, allpts];
function _trapezohedron(faces, r, side, longside, h, height, d) =
assert(faces%2==0, "Must set 'faces' to an even number for trapezohedron")
assert(is_undef(h) || is_undef(height), "Cannot define both 'h' and 'height'")
let(
r = get_radius(r=r, d=d),
h = first_defined([h,height]),
N = faces/2,
parmcount = num_defined([r,side,longside,h])
)
assert(parmcount==2,"Must define exactly two of 'r' (or 'd'), 'side', 'longside', and 'h' (or 'height')")
let(
separation = ( // z distance between non-apex vertices that aren't in the same plane
!is_undef(h) ? 2*h*sqr(tan(90/N)) :
(!is_undef(r) && !is_undef(side))? sqrt(side*side+2*r*r*(cos(180/N)-1)) :
(!is_undef(r) && !is_undef(longside))? 2 * sqrt(sqr(longside)-sqr(r)) / (1-sqr(tan(90/N))) * sqr(tan(90/N)) :
2*sqr(sin(90/N))*sqrt((sqr(side) + 2*sqr(longside)*(cos(180/N)-1)) / (cos(180/N)-1) / (cos(180/N)+cos(360/N)))
)
)
assert(separation==separation, "Impossible trapezohedron specification")
let(
h = !is_undef(h) ? h : 0.5*separation / sqr(tan(90/N)),
r = (
!is_undef(r) ? r :
!is_undef(side) ? sqrt((sqr(separation) - sqr(side))/2/(cos(180/N)-1)) :
sqrt(sqr(longside) - sqr(h-separation/2))
),
top = [for(i=[0:1:N-1]) [r*cos(360/N*i), r*sin(360/N*i),separation/2]],
bot = [for(i=[0:1:N-1]) [r*cos(180/N+360/N*i), r*sin(180/N+360/N*i),-separation/2]],
vertices = concat([[0,0,h],[0,0,-h]],top,bot)
) [
"trapezohedron", "trapezohedron", faces, [4],
!is_undef(side)? side : sqrt(sqr(separation)-2*r*(cos(180/N)-1)), // actual side length
h*r/sqrt(r*r+sqr(h+separation/2)), // in_radius
h*r/sqrt(r*r+sqr(h-separation/2)), // mid_radius
max(h,sqrt(r*r+sqr(separation/2))), // out_radius
undef, // volume
vertices
];
function _facenormal(pts, face) = unit(cross(pts[face[2]]-pts[face[0]], pts[face[1]]-pts[face[0]]));
// hull() function returns triangulated faces. This function identifies the vertices that belong to each face
// by grouping together the face triangles that share normal vectors. The output gives the face polygon
// point indices in arbitrary order (not usable as input to a polygon call) and a normal vector. Finally
// the faces are ordered based on angle with their center (will always give a valid order for convex polygons).
// Final return is [ordered_faces, facenormals] where the first is a list of indices into the point list
// and the second is a list of vectors.
function _full_faces(pts,faces) =
let(
normals = [for(face=faces) quant(_facenormal(pts,face),1e-12)],
groups = _unique_groups(normals),
faces = [for(entry=groups) unique(flatten(select(faces, entry)))],
facenormals = [for(entry=groups) normals[entry[0]]],
ordered_faces = [
for(i=idx(faces))
let(
facepts = select(pts, faces[i]),
center = mean(facepts),
rotatedface = rot(from=facenormals[i], to=[0,0,1], p=move(-center, p=facepts)),
clockwise = sortidx([for(pt=rotatedface) -atan2(pt.y,pt.x)])
)
select(faces[i],clockwise)
]
) [ordered_faces, facenormals];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap