forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neumf_model.py
443 lines (359 loc) · 16.5 KB
/
neumf_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines NeuMF model for NCF framework.
Some abbreviations used in the code base:
NeuMF: Neural Matrix Factorization
NCF: Neural Collaborative Filtering
GMF: Generalized Matrix Factorization
MLP: Multi-Layer Perceptron
GMF applies a linear kernel to model the latent feature interactions, and MLP
uses a nonlinear kernel to learn the interaction function from data. NeuMF model
is a fused model of GMF and MLP to better model the complex user-item
interactions, and unifies the strengths of linearity of MF and non-linearity of
MLP for modeling the user-item latent structures.
In NeuMF model, it allows GMF and MLP to learn separate embeddings, and combine
the two models by concatenating their last hidden layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow import estimator as tf_estimator
from typing import Any, Dict, Text
from official.recommendation import constants as rconst
from official.recommendation import movielens
from official.recommendation import ncf_common
from official.recommendation import stat_utils
def sparse_to_dense_grads(grads_and_vars):
"""Convert sparse gradients to dense gradients.
All sparse gradients, which are represented as instances of tf.IndexedSlices,
are converted to dense Tensors. Dense gradients, which are represents as
Tensors, are unchanged.
The purpose of this conversion is that for small embeddings, which are used by
this model, applying dense gradients with the AdamOptimizer is faster than
applying sparse gradients.
Args
grads_and_vars: A list of (gradient, variable) tuples. Each gradient can
be a Tensor or an IndexedSlices. Tensors are unchanged, and IndexedSlices
are converted to dense Tensors.
Returns:
The same list of (gradient, variable) as `grads_and_vars`, except each
IndexedSlices gradient is converted to a Tensor.
"""
# Calling convert_to_tensor changes IndexedSlices into Tensors, and leaves
# Tensors unchanged.
return [(tf.convert_to_tensor(g), v) for g, v in grads_and_vars]
def neumf_model_fn(features, labels, mode, params):
"""Model Function for NeuMF estimator."""
if params.get("use_seed"):
tf.set_random_seed(stat_utils.random_int32())
users = features[movielens.USER_COLUMN]
items = features[movielens.ITEM_COLUMN]
user_input = tf.keras.layers.Input(tensor=users)
item_input = tf.keras.layers.Input(tensor=items)
logits = construct_model(user_input, item_input, params).output
# Softmax with the first column of zeros is equivalent to sigmoid.
softmax_logits = ncf_common.convert_to_softmax_logits(logits)
if mode == tf_estimator.ModeKeys.EVAL:
duplicate_mask = tf.cast(features[rconst.DUPLICATE_MASK], tf.float32)
return _get_estimator_spec_with_metrics(
logits,
softmax_logits,
duplicate_mask,
params["num_neg"],
params["match_mlperf"],
use_tpu_spec=params["use_tpu"])
elif mode == tf_estimator.ModeKeys.TRAIN:
labels = tf.cast(labels, tf.int32)
valid_pt_mask = features[rconst.VALID_POINT_MASK]
optimizer = tf.compat.v1.train.AdamOptimizer(
learning_rate=params["learning_rate"],
beta1=params["beta1"],
beta2=params["beta2"],
epsilon=params["epsilon"])
if params["use_tpu"]:
optimizer = tf.compat.v1.tpu.CrossShardOptimizer(optimizer)
loss = tf.compat.v1.losses.sparse_softmax_cross_entropy(
labels=labels,
logits=softmax_logits,
weights=tf.cast(valid_pt_mask, tf.float32))
tf.identity(loss, name="cross_entropy")
global_step = tf.compat.v1.train.get_global_step()
tvars = tf.compat.v1.trainable_variables()
gradients = optimizer.compute_gradients(
loss, tvars, colocate_gradients_with_ops=True)
gradients = sparse_to_dense_grads(gradients)
minimize_op = optimizer.apply_gradients(
gradients, global_step=global_step, name="train")
update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
train_op = tf.group(minimize_op, update_ops)
return tf_estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
else:
raise NotImplementedError
def _strip_first_and_last_dimension(x, batch_size):
return tf.reshape(x[0, :], (batch_size,))
def construct_model(user_input: tf.Tensor, item_input: tf.Tensor,
params: Dict[Text, Any]) -> tf.keras.Model:
"""Initialize NeuMF model.
Args:
user_input: keras input layer for users
item_input: keras input layer for items
params: Dict of hyperparameters.
Raises:
ValueError: if the first model layer is not even.
Returns:
model: a keras Model for computing the logits
"""
num_users = params["num_users"]
num_items = params["num_items"]
model_layers = params["model_layers"]
mf_regularization = params["mf_regularization"]
mlp_reg_layers = params["mlp_reg_layers"]
mf_dim = params["mf_dim"]
if model_layers[0] % 2 != 0:
raise ValueError("The first layer size should be multiple of 2!")
# Initializer for embedding layers
embedding_initializer = "glorot_uniform"
def mf_slice_fn(x):
x = tf.squeeze(x, [1])
return x[:, :mf_dim]
def mlp_slice_fn(x):
x = tf.squeeze(x, [1])
return x[:, mf_dim:]
# It turns out to be significantly more effecient to store the MF and MLP
# embedding portions in the same table, and then slice as needed.
embedding_user = tf.keras.layers.Embedding(
num_users,
mf_dim + model_layers[0] // 2,
embeddings_initializer=embedding_initializer,
embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
input_length=1,
name="embedding_user")(
user_input)
embedding_item = tf.keras.layers.Embedding(
num_items,
mf_dim + model_layers[0] // 2,
embeddings_initializer=embedding_initializer,
embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
input_length=1,
name="embedding_item")(
item_input)
# GMF part
mf_user_latent = tf.keras.layers.Lambda(
mf_slice_fn, name="embedding_user_mf")(
embedding_user)
mf_item_latent = tf.keras.layers.Lambda(
mf_slice_fn, name="embedding_item_mf")(
embedding_item)
# MLP part
mlp_user_latent = tf.keras.layers.Lambda(
mlp_slice_fn, name="embedding_user_mlp")(
embedding_user)
mlp_item_latent = tf.keras.layers.Lambda(
mlp_slice_fn, name="embedding_item_mlp")(
embedding_item)
# Element-wise multiply
mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])
# Concatenation of two latent features
mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])
num_layer = len(model_layers) # Number of layers in the MLP
for layer in xrange(1, num_layer):
model_layer = tf.keras.layers.Dense(
model_layers[layer],
kernel_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[layer]),
activation="relu")
mlp_vector = model_layer(mlp_vector)
# Concatenate GMF and MLP parts
predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])
# Final prediction layer
logits = tf.keras.layers.Dense(
1,
activation=None,
kernel_initializer="lecun_uniform",
name=movielens.RATING_COLUMN)(
predict_vector)
# Print model topology.
model = tf.keras.models.Model([user_input, item_input], logits)
model.summary()
sys.stdout.flush()
return model
def _get_estimator_spec_with_metrics(logits: tf.Tensor,
softmax_logits: tf.Tensor,
duplicate_mask: tf.Tensor,
num_training_neg: int,
match_mlperf: bool = False,
use_tpu_spec: bool = False):
"""Returns a EstimatorSpec that includes the metrics."""
cross_entropy, \
metric_fn, \
in_top_k, \
ndcg, \
metric_weights = compute_eval_loss_and_metrics_helper(
logits,
softmax_logits,
duplicate_mask,
num_training_neg,
match_mlperf)
if use_tpu_spec:
return tf_estimator.tpu.TPUEstimatorSpec(
mode=tf_estimator.ModeKeys.EVAL,
loss=cross_entropy,
eval_metrics=(metric_fn, [in_top_k, ndcg, metric_weights]))
return tf_estimator.EstimatorSpec(
mode=tf_estimator.ModeKeys.EVAL,
loss=cross_entropy,
eval_metric_ops=metric_fn(in_top_k, ndcg, metric_weights))
def compute_eval_loss_and_metrics_helper(logits: tf.Tensor,
softmax_logits: tf.Tensor,
duplicate_mask: tf.Tensor,
num_training_neg: int,
match_mlperf: bool = False):
"""Model evaluation with HR and NDCG metrics.
The evaluation protocol is to rank the test interacted item (truth items)
among the randomly chosen 999 items that are not interacted by the user.
The performance of the ranked list is judged by Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG).
For evaluation, the ranked list is truncated at 10 for both metrics. As such,
the HR intuitively measures whether the test item is present on the top-10
list, and the NDCG accounts for the position of the hit by assigning higher
scores to hits at top ranks. Both metrics are calculated for each test user,
and the average scores are reported.
If `match_mlperf` is True, then the HR and NDCG computations are done in a
slightly unusual way to match the MLPerf reference implementation.
Specifically, if the evaluation negatives contain duplicate items, it will be
treated as if the item only appeared once. Effectively, for duplicate items in
a row, the predicted score for all but one of the items will be set to
-infinity
For example, suppose we have that following inputs:
logits_by_user: [[ 2, 3, 3],
[ 5, 4, 4]]
items_by_user: [[10, 20, 20],
[30, 40, 40]]
# Note: items_by_user is not explicitly present. Instead the relevant \
information is contained within `duplicate_mask`
top_k: 2
Then with match_mlperf=True, the HR would be 2/2 = 1.0. With
match_mlperf=False, the HR would be 1/2 = 0.5. This is because each user has
predicted scores for only 2 unique items: 10 and 20 for the first user, and 30
and 40 for the second. Therefore, with match_mlperf=True, it's guaranteed the
first item's score is in the top 2. With match_mlperf=False, this function
would compute the first user's first item is not in the top 2, because item 20
has a higher score, and item 20 occurs twice.
Args:
logits: A tensor containing the predicted logits for each user. The shape of
logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits for a
user are grouped, and the last element of the group is the true element.
softmax_logits: The same tensor, but with zeros left-appended.
duplicate_mask: A vector with the same shape as logits, with a value of 1 if
the item corresponding to the logit at that position has already appeared
for that user.
num_training_neg: The number of negatives per positive during training.
match_mlperf: Use the MLPerf reference convention for computing rank.
Returns:
cross_entropy: the loss
metric_fn: the metrics function
in_top_k: hit rate metric
ndcg: ndcg metric
metric_weights: metric weights
"""
in_top_k, ndcg, metric_weights, logits_by_user = compute_top_k_and_ndcg(
logits, duplicate_mask, match_mlperf)
# Examples are provided by the eval Dataset in a structured format, so eval
# labels can be reconstructed on the fly.
eval_labels = tf.reshape(
shape=(-1,),
tensor=tf.one_hot(
tf.zeros(shape=(logits_by_user.shape[0],), dtype=tf.int32) +
rconst.NUM_EVAL_NEGATIVES,
logits_by_user.shape[1],
dtype=tf.int32))
eval_labels_float = tf.cast(eval_labels, tf.float32)
# During evaluation, the ratio of negatives to positives is much higher
# than during training. (Typically 999 to 1 vs. 4 to 1) By adjusting the
# weights for the negative examples we compute a loss which is consistent with
# the training data. (And provides apples-to-apples comparison)
negative_scale_factor = num_training_neg / rconst.NUM_EVAL_NEGATIVES
example_weights = ((eval_labels_float +
(1 - eval_labels_float) * negative_scale_factor) *
(1 + rconst.NUM_EVAL_NEGATIVES) / (1 + num_training_neg))
# Tile metric weights back to logit dimensions
expanded_metric_weights = tf.reshape(
tf.tile(metric_weights[:, tf.newaxis],
(1, rconst.NUM_EVAL_NEGATIVES + 1)), (-1,))
# ignore padded examples
example_weights *= tf.cast(expanded_metric_weights, tf.float32)
cross_entropy = tf.compat.v1.losses.sparse_softmax_cross_entropy(
logits=softmax_logits, labels=eval_labels, weights=example_weights)
def metric_fn(top_k_tensor, ndcg_tensor, weight_tensor):
return {
rconst.HR_KEY:
tf.compat.v1.metrics.mean(
top_k_tensor, weights=weight_tensor,
name=rconst.HR_METRIC_NAME),
rconst.NDCG_KEY:
tf.compat.v1.metrics.mean(
ndcg_tensor,
weights=weight_tensor,
name=rconst.NDCG_METRIC_NAME)
}
return cross_entropy, metric_fn, in_top_k, ndcg, metric_weights
def compute_top_k_and_ndcg(logits: tf.Tensor,
duplicate_mask: tf.Tensor,
match_mlperf: bool = False):
"""Compute inputs of metric calculation.
Args:
logits: A tensor containing the predicted logits for each user. The shape of
logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits for a
user are grouped, and the first element of the group is the true element.
duplicate_mask: A vector with the same shape as logits, with a value of 1 if
the item corresponding to the logit at that position has already appeared
for that user.
match_mlperf: Use the MLPerf reference convention for computing rank.
Returns:
is_top_k, ndcg and weights, all of which has size (num_users_in_batch,), and
logits_by_user which has size
(num_users_in_batch, (rconst.NUM_EVAL_NEGATIVES + 1)).
"""
logits_by_user = tf.reshape(logits, (-1, rconst.NUM_EVAL_NEGATIVES + 1))
duplicate_mask_by_user = tf.cast(
tf.reshape(duplicate_mask, (-1, rconst.NUM_EVAL_NEGATIVES + 1)),
logits_by_user.dtype)
if match_mlperf:
# Set duplicate logits to the min value for that dtype. The MLPerf
# reference dedupes during evaluation.
logits_by_user *= (1 - duplicate_mask_by_user)
logits_by_user += duplicate_mask_by_user * logits_by_user.dtype.min
# Determine the location of the first element in each row after the elements
# are sorted.
sort_indices = tf.argsort(logits_by_user, axis=1, direction="DESCENDING")
# Use matrix multiplication to extract the position of the true item from the
# tensor of sorted indices. This approach is chosen because both GPUs and TPUs
# perform matrix multiplications very quickly. This is similar to np.argwhere.
# However this is a special case because the target will only appear in
# sort_indices once.
one_hot_position = tf.cast(
tf.equal(sort_indices, rconst.NUM_EVAL_NEGATIVES), tf.int32)
sparse_positions = tf.multiply(
one_hot_position,
tf.range(logits_by_user.shape[1])[tf.newaxis, :])
position_vector = tf.reduce_sum(sparse_positions, axis=1)
in_top_k = tf.cast(tf.less(position_vector, rconst.TOP_K), tf.float32)
ndcg = tf.math.log(2.) / tf.math.log(tf.cast(position_vector, tf.float32) + 2)
ndcg *= in_top_k
# If a row is a padded row, all but the first element will be a duplicate.
metric_weights = tf.not_equal(
tf.reduce_sum(duplicate_mask_by_user, axis=1), rconst.NUM_EVAL_NEGATIVES)
return in_top_k, ndcg, metric_weights, logits_by_user