-
Notifications
You must be signed in to change notification settings - Fork 1
/
tokenizer.py
446 lines (345 loc) · 12.4 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron tokenizers."""
from abc import ABC
from abc import abstractmethod
from tokenizers import Tokenizer
from transformers import GPT2Tokenizer, GPT2TokenizerFast, AutoTokenizer
import numpy as np
import sentencepiece as spm
from typing import List, Union
def build_tokenizer(args):
"""Initialize tokenizer."""
if args.rank == 0:
print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True)
# Select and instantiate the tokenizer.
if args.tokenizer_type.lower() == "GPT2BPETokenizer".lower():
assert args.vocab_file is not None
assert args.merge_file is not None
tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
elif args.tokenizer_type.lower() == "SPMTokenizer".lower():
assert args.vocab_file is not None
tokenizer = SentencePieceTokenizer(args.vocab_file)
elif args.tokenizer_type.lower() == "HFTokenizer".lower():
assert args.vocab_file is not None
tokenizer = HFTokenizer(args.vocab_file)
elif args.tokenizer_type.lower() == "HFGPT2Tokenizer".lower():
if args.vocab_file is None:
print(
"WARNING: No vocab file found, loading Huggingface's pretrained GPT2Tokenizer"
)
tokenizer = HFGPT2Tokenizer(args.vocab_file)
elif args.tokenizer_type.lower() == "CharLevelTokenizer".lower():
tokenizer = CharLevelTokenizer(vocab_size=512)
elif args.tokenizer_type.lower() == "TiktokenTokenizer".lower():
assert args.vocab_file is not None
tokenizer = TiktokenTokenizer(args.vocab_file)
elif args.tokenizer_type.lower() == "AutoTokenizer".lower():
assert args.vocab_file is not None
tokenizer = HFAutoTokenizer(args.vocab_file)
else:
raise NotImplementedError(
"{} tokenizer is not " "implemented.".format(args.tokenizer_type)
)
# Add vocab size.
args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args)
return tokenizer
def _vocab_size_with_padding(orig_vocab_size, args):
"""Pad vocab size so it is divisible by model parallel size and
still having GPU friendly size."""
after = orig_vocab_size
multiple = args.make_vocab_size_divisible_by * args.model_parallel_size
while (after % multiple) != 0:
after += 1
if args.rank == 0:
print(
" > padded vocab (size: {}) with {} dummy tokens "
"(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after),
flush=True,
)
return after
class AbstractTokenizer(ABC):
"""Abstract class for tokenizer."""
def __init__(self, name):
self.name = name
super().__init__()
@property
@abstractmethod
def vocab_size(self):
pass
@property
@abstractmethod
def vocab(self):
"""Dictionary from vocab text token to id token."""
pass
@property
@abstractmethod
def inv_vocab(self):
"""Dictionary from vocab id token to text token."""
pass
@abstractmethod
def tokenize(self, text):
pass
def detokenize(self, token_ids):
raise NotImplementedError(
"detokenizer is not implemented for {} " "tokenizer".format(self.name)
)
@property
def cls(self):
raise NotImplementedError(
"CLS is not provided for {} " "tokenizer".format(self.name)
)
@property
def sep(self):
raise NotImplementedError(
"SEP is not provided for {} " "tokenizer".format(self.name)
)
@property
def pad(self):
raise NotImplementedError(
"PAD is not provided for {} " "tokenizer".format(self.name)
)
@property
def eod(self):
raise NotImplementedError(
"EOD is not provided for {} " "tokenizer".format(self.name)
)
@property
def mask(self):
raise NotImplementedError(
"MASK is not provided for {} " "tokenizer".format(self.name)
)
class _GPT2BPETokenizer(AbstractTokenizer):
"""Original GPT2 BPE tokenizer."""
def __init__(self, vocab_file, merge_file):
name = "GPT2 BPE"
super().__init__(name)
self.tokenizer = GPT2Tokenizer(
vocab_file, merge_file, errors="replace", special_tokens=[], max_len=None
)
self.eod_id = self.tokenizer.encoder["<|endoftext|>"]
@property
def vocab_size(self):
return len(self.tokenizer.encoder)
@property
def vocab(self):
return self.tokenizer.encoder
@property
def inv_vocab(self):
return self.tokenizer.decoder
def tokenize(self, text):
return self.tokenizer.encode(text)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class SentencePieceTokenizer(AbstractTokenizer):
"""Designed to Integrate SP's Tokenizer."""
def __init__(self, vocab_file):
name = "SPM"
super().__init__(name)
self.tokenizer = spm.SentencePieceProcessor(model_file=vocab_file)
self.eod_id = self.tokenizer.piece_to_id("<|endoftext|>")
@property
def vocab_size(self):
return self.tokenizer.get_piece_size()
@property
def vocab(self):
return {
self.tokenizer.id_to_piece(idx): idx
for idx in range(self.tokenizer.get_piece_size())
}
@property
def inv_vocab(self):
return {
idx: self.tokenizer.id_to_piece(idx)
for idx in range(self.tokenizer.get_piece_size())
}
def tokenize(self, text):
return self.tokenizer.encode(text)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class HFTokenizer(AbstractTokenizer):
"""Designed to Integrate HF's Tokenizer library."""
def __init__(self, vocab_file):
name = "HFTokenizer"
super().__init__(name)
self.tokenizer = Tokenizer.from_file(vocab_file)
self.eod_id = self.tokenizer.token_to_id("<|endoftext|>")
self.pad_id = self.tokenizer.token_to_id("<|padding|>")
@property
def vocab_size(self):
return self.tokenizer.get_vocab_size()
@property
def vocab(self):
return self.tokenizer.get_vocab()
@property
def inv_vocab(self):
return self.tokenizer.decoder
def tokenize(self, text: str):
return self.tokenizer.encode(text).ids
def tokenize_batch(self, text_batch: Union[List[str], str]):
return self.tokenizer.encode_batch(text_batch)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class HFAutoTokenizer(AbstractTokenizer):
"""Designed to Integrate HF's Tokenizer library."""
def __init__(self, vocab_file):
name = "HFAutoTokenizer"
super().__init__(name)
self.tokenizer = AutoTokenizer.from_pretrained(vocab_file)
if self.tokenizer.eos_token_id:
self.eod_id = self.tokenizer.eos_token_id
else:
self.eod_id = None
if self.tokenizer.pad_token_id:
self.pad_id = self.tokenizer.pad_token_id
else:
self.pad_id = None
@property
def vocab_size(self):
return len(self.tokenizer)
@property
def vocab(self):
return self.tokenizer.get_vocab()
@property
def inv_vocab(self):
return self.tokenizer.decoder
def tokenize(self, text: str):
return self.tokenizer.encode(text)
def tokenize_batch(self, text_batch: Union[List[str], str]):
return self.tokenizer.encode(text_batch)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class HFGPT2Tokenizer(AbstractTokenizer):
"""Designed to Integrate the pretrained OpenAI GPT2 Tokenizers from HF"""
def __init__(self, vocab_file=None, fast=True):
name = "HFGPT2Tokenizer"
if fast:
name += "Fast"
super().__init__(name)
if vocab_file is None:
vocab_file = "gpt2"
if fast:
self.tokenizer = GPT2TokenizerFast.from_pretrained(vocab_file)
else:
self.tokenizer = GPT2Tokenizer.from_pretrained(vocab_file)
self.tokenizer.add_special_tokens({"pad_token": "<|padding|>"})
self.eod_id = self.tokenizer.eos_token_id
self.pad_id = self.tokenizer.pad_token_id
@property
def vocab_size(self):
return len(self.tokenizer)
@property
def vocab(self):
return self.tokenizer.get_vocab()
@property
def inv_vocab(self):
return self.tokenizer._tokenizer.decoder
def tokenize(self, text: str):
return self.tokenizer.encode(text)
def tokenize_batch(self, text_batch: Union[List[str], str]):
if isinstance(text_batch, str):
text_batch = [text_batch]
return [self.tokenize(t) for t in text_batch]
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class CharLevelTokenizer(AbstractTokenizer):
"""Character Level Tokenizer"""
def __init__(self, vocab_size):
name = "CharLevelTokenizer"
super().__init__(name)
self._vocab_size = vocab_size
self.eod_id = 0
self.pad_id = 1
def clamp(self, n):
return max(32, min(n, self.vocab_size))
@property
def vocab_size(self):
return self._vocab_size
@property
def vocab(self):
raise NotImplementedError
@property
def inv_vocab(self):
raise NotImplementedError
def decode_token(self, token: int):
return str(chr(self.clamp(token)))
def tokenize(self, text: str):
return list(np.fromstring(text, dtype=np.uint8))
def tokenize_batch(self, text_batch: Union[List[str], str]):
if isinstance(text_batch, list):
return [self.tokenize(s) for s in text_batch]
else:
return self.tokenize(text_batch)
def detokenize(self, token_ids):
return "".join(list(map(self.decode_token, token_ids)))
@property
def eod(self):
return self.eod_id
class TiktokenTokenizer(AbstractTokenizer):
"""Tokenizer from OpenAI's tiktoken implementation"""
def __init__(self, vocab_file):
try:
import tiktoken
except ModuleNotFoundError:
print("Please install tiktoken: (https://github.com/openai/tiktoken)")
raise Exception
name = "TiktokenTokenizer"
super().__init__(name)
self.tokenizer = tiktoken.get_encoding(vocab_file)
self.eod_id = self.tokenizer.eot_token
self.pad_id = None
@property
def vocab_size(self):
return self.tokenizer.n_vocab
@property
def vocab(self):
raise NotImplementedError(
"TiktokenTokenizer does not implement vocabulary access."
)
@property
def inv_vocab(self):
raise NotImplementedError(
"TiktokenTokenizer does not implement vocabulary access. \
To get the idx-th token in vocabulary, use tokenizer.decode([idx]) ."
)
def tokenize(self, text: str):
return self.tokenizer.encode(text) # , allowed_special="all")
def tokenize_batch(self, text_batch: List[str]):
return self.tokenizer.encode_batch(text_batch, allowed_special="all")
def detokenize(self, token_ids):
return self.tokenizer.decode(tokens=token_ids, errors="strict")
@property
def eod(self):
return self.eod_id
@property
def pad(self):
raise NotImplementedError