Skip to content

Latest commit

 

History

History
47 lines (36 loc) · 1.36 KB

README.md

File metadata and controls

47 lines (36 loc) · 1.36 KB

CertifiedSNN

Code for the paper: Certified Adversarial Robustness for Rate Encoded Spiking Neural Networks

Citation: @inproceedings{ mukhoty2024certified, title={Certified Adversarial Robustness for Rate Encoded Spiking Neural Networks}, author={Bhaskar Mukhoty and Hilal AlQuabeh and Giulia De Masi and Huan Xiong and Bin Gu}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024}, url={https://openreview.net/forum?id=5bNYf0CqxY} }

Requirements:

pytorch 1.11.0
torchvision 0.15.2
torchattacks 3.4.0
statsmodels 0.14.0
scipy 1.10.1

Training: The below command will train a VGG11 model on the CIFAR-10 dataset using rate encoding with no attack, and a latency, T=4. python main_train.py

Testing: To test a trained model, use the following command: python main_test.py --id "name_of_model"

For example: python main_test.py --id vgg11_rate_T4_clean

If an attack is applicable, you can specify it using the --attack flag with one of the following options: "pgd", "fgsm", "gn", or "pgd-l1".

Certification: To certify a trained model using default statistical testing parameters, run: python certify.py The default statistical testing parameters include: m0 = 10 m = 100 error_rate = 1

Contact: Bhaskar Mukhoty ({firstname}.{lastname}@gmail.com) Hilal AlQuabeh (h{lastname}@gmail.com)