-
Notifications
You must be signed in to change notification settings - Fork 3
/
fix16.c
364 lines (317 loc) · 8.71 KB
/
fix16.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/** \file fix16.c
*
* \brief fix16.c from libfixmath.
*
* This file implements some fixed-point calculation primitives.
*
* This file was adapted from fix16.c and fix16_exp.c of libfixmath r78,
* which can be obtained from
* http://code.google.com/p/libfixmath/source/browse/trunk/libfixmath/.
* The main modifications are:
* - Removed code of unused functions.
* - Changed overflow code to set #fix16_error_occurred instead of just
* returning #fix16_overflow.
* - Moved fix16_log2() into fix16.c.
* - Changed fix16_log2() to avoid division.
*
* The rest of the file was written mainly by the libfixmath contributors.
* A list of contributors can be retrieved from
* http://code.google.com/p/libfixmath/people/list.
*
* This file is licensed as described by the file LIBFIXMATH_LICENCE.
*/
#include "common.h"
#include "fix16.h"
#ifndef FIXMATH_NO_64BIT
#include "int64.h"
#endif
/** At the beginning of a series of computations, this will be set to false.
* If it is set to true during the computations, then
* something unexpected occurred (eg. arithmetic overflow) and the result
* should be considered invalid.
*/
bool fix16_error_occurred;
/* Subtraction and addition with overflow detection.
*/
fix16_t fix16_add(fix16_t a, fix16_t b)
{
// Use unsigned integers because overflow with signed integers is
// an undefined operation (http://www.airs.com/blog/archives/120).
uint32_t _a = a, _b = b;
uint32_t sum = _a + _b;
#ifndef FIXMATH_NO_OVERFLOW
// Overflow can only happen if sign of a == sign of b, and then
// it causes sign of sum != sign of a.
if (!((_a ^ _b) & 0x80000000) && ((_a ^ sum) & 0x80000000))
{
fix16_error_occurred = true;
return fix16_overflow;
}
#endif
return sum;
}
fix16_t fix16_sub(fix16_t a, fix16_t b)
{
uint32_t _a = a, _b = b;
uint32_t diff = _a - _b;
#ifndef FIXMATH_NO_OVERFLOW
// Overflow can only happen if sign of a != sign of b, and then
// it causes sign of diff != sign of a.
if (((_a ^ _b) & 0x80000000) && ((_a ^ diff) & 0x80000000))
{
fix16_error_occurred = true;
return fix16_overflow;
}
#endif
return diff;
}
/* 64-bit implementation for fix16_mul. Fastest version for e.g. ARM Cortex M3.
* Performs a 32*32 -> 64bit multiplication. The middle 32 bits are the result,
* bottom 16 bits are used for rounding, and upper 16 bits are used for overflow
* detection.
*/
#if !defined(FIXMATH_NO_64BIT) && !defined(FIXMATH_OPTIMIZE_8BIT)
fix16_t fix16_mul(fix16_t inArg0, fix16_t inArg1)
{
int64_t product = (int64_t)inArg0 * inArg1;
#ifndef FIXMATH_NO_OVERFLOW
// The upper 17 bits should all be the same (the sign).
uint32_t upper = (product >> 47);
#endif
if (product < 0)
{
#ifndef FIXMATH_NO_OVERFLOW
if (~upper)
{
fix16_error_occurred = true;
return fix16_overflow;
}
#endif
#ifndef FIXMATH_NO_ROUNDING
// This adjustment is required in order to round -1/2 correctly
product--;
#endif
}
else
{
#ifndef FIXMATH_NO_OVERFLOW
if (upper)
{
fix16_error_occurred = true;
return fix16_overflow;
}
#endif
}
#ifdef FIXMATH_NO_ROUNDING
return product >> 16;
#else
fix16_t result = product >> 16;
result += (product & 0x8000) >> 15;
return result;
#endif
}
#endif
/* 32-bit implementation of fix16_mul. Potentially fast on 16-bit processors,
* and this is a relatively good compromise for compilers that do not support
* uint64_t. Uses 16*16->32bit multiplications.
*/
#if defined(FIXMATH_NO_64BIT) && !defined(FIXMATH_OPTIMIZE_8BIT)
fix16_t fix16_mul(fix16_t inArg0, fix16_t inArg1)
{
uint32_t product_lo_tmp;
fix16_t result;
// Each argument is divided to 16-bit parts.
// AB
// * CD
// -----------
// BD 16 * 16 -> 32 bit products
// CB
// AD
// AC
// |----| 64 bit product
int32_t A = (inArg0 >> 16), C = (inArg1 >> 16);
uint32_t B = (inArg0 & 0xFFFF), D = (inArg1 & 0xFFFF);
int32_t AC = A*C;
int32_t AD_CB = A*D + C*B;
uint32_t BD = B*D;
int32_t product_hi = AC + (AD_CB >> 16);
// Handle carry from lower 32 bits to upper part of result.
uint32_t ad_cb_temp = AD_CB << 16;
uint32_t product_lo = BD + ad_cb_temp;
if (product_lo < BD)
product_hi++;
#ifndef FIXMATH_NO_OVERFLOW
// The upper 17 bits should all be the same (the sign).
if (product_hi >> 31 != product_hi >> 15)
{
fix16_error_occurred = true;
return fix16_overflow;
}
#endif
#ifdef FIXMATH_NO_ROUNDING
return (product_hi << 16) | (product_lo >> 16);
#else
// Subtracting 0x8000 (= 0.5) and then using signed right shift
// achieves proper rounding to result-1, except in the corner
// case of negative numbers and lowest word = 0x8000.
// To handle that, we also have to subtract 1 for negative numbers.
product_lo_tmp = product_lo;
product_lo -= 0x8000;
product_lo -= (uint32_t)product_hi >> 31;
if (product_lo > product_lo_tmp)
product_hi--;
// Discard the lowest 16 bits. Note that this is not exactly the same
// as dividing by 0x10000. For example if product = -1, result will
// also be -1 and not 0. This is compensated by adding +1 to the result
// and compensating this in turn in the rounding above.
result = (product_hi << 16) | (product_lo >> 16);
result += 1;
return result;
#endif
}
#endif
/* 8-bit implementation of fix16_mul. Fastest on e.g. Atmel AVR.
* Uses 8*8->16bit multiplications, and also skips any bytes that
* are zero.
*/
#if defined(FIXMATH_OPTIMIZE_8BIT)
fix16_t fix16_mul(fix16_t inArg0, fix16_t inArg1)
{
uint32_t _a = (inArg0 >= 0) ? inArg0 : (-inArg0);
uint32_t _b = (inArg1 >= 0) ? inArg1 : (-inArg1);
uint8_t va[4] = {_a, (_a >> 8), (_a >> 16), (_a >> 24)};
uint8_t vb[4] = {_b, (_b >> 8), (_b >> 16), (_b >> 24)};
uint32_t low = 0;
uint32_t mid = 0;
// Result column i depends on va[0..i] and vb[i..0]
#ifndef FIXMATH_NO_OVERFLOW
// i = 6
if (va[3] && vb[3])
{
fix16_error_occurred = true;
return fix16_overflow;
}
#endif
// i = 5
if (va[2] && vb[3]) mid += (uint16_t)va[2] * vb[3];
if (va[3] && vb[2]) mid += (uint16_t)va[3] * vb[2];
mid <<= 8;
// i = 4
if (va[1] && vb[3]) mid += (uint16_t)va[1] * vb[3];
if (va[2] && vb[2]) mid += (uint16_t)va[2] * vb[2];
if (va[3] && vb[1]) mid += (uint16_t)va[3] * vb[1];
#ifndef FIXMATH_NO_OVERFLOW
if (mid & 0xFF000000)
{
fix16_error_occurred = true;
return fix16_overflow;
}
#endif
mid <<= 8;
// i = 3
if (va[0] && vb[3]) mid += (uint16_t)va[0] * vb[3];
if (va[1] && vb[2]) mid += (uint16_t)va[1] * vb[2];
if (va[2] && vb[1]) mid += (uint16_t)va[2] * vb[1];
if (va[3] && vb[0]) mid += (uint16_t)va[3] * vb[0];
#ifndef FIXMATH_NO_OVERFLOW
if (mid & 0xFF000000)
{
fix16_error_occurred = true;
return fix16_overflow;
}
#endif
mid <<= 8;
// i = 2
if (va[0] && vb[2]) mid += (uint16_t)va[0] * vb[2];
if (va[1] && vb[1]) mid += (uint16_t)va[1] * vb[1];
if (va[2] && vb[0]) mid += (uint16_t)va[2] * vb[0];
// i = 1
if (va[0] && vb[1]) low += (uint16_t)va[0] * vb[1];
if (va[1] && vb[0]) low += (uint16_t)va[1] * vb[0];
low <<= 8;
// i = 0
if (va[0] && vb[0]) low += (uint16_t)va[0] * vb[0];
#ifndef FIXMATH_NO_ROUNDING
low += 0x8000;
#endif
mid += (low >> 16);
#ifndef FIXMATH_NO_OVERFLOW
if (mid & 0x80000000)
{
fix16_error_occurred = true;
return fix16_overflow;
}
#endif
fix16_t result = mid;
/* Figure out the sign of result */
if ((inArg0 >= 0) != (inArg1 >= 0))
{
result = -result;
}
return result;
}
#endif
/**
* Divides x by 2 and returns the result, rounding if appropriate.
*/
static fix16_t fix16_rs(fix16_t x)
{
#ifdef FIXMATH_NO_ROUNDING
return (x >> 1);
#else
fix16_t y = (x >> 1) + (x & 1);
return y;
#endif
}
/**
* Calculates the log base 2 of input.
* Note that negative inputs are invalid! (will set #fix16_error_occurred,
* since there are no exceptions)
*
* i.e. 2 to the power output = input.
* It's equivalent to the log or ln functions, except it uses base 2 instead
* of base 10 or base e. This is useful as binary things like this are easy
* for binary devices, like modern microprocessros, to calculate.
*
* This can be used as a helper function to calculate powers with non-integer
* powers and/or bases.
*/
fix16_t fix16_log2(fix16_t x)
{
fix16_t result = 0;
unsigned int i;
// Note that a negative x gives a non-real result.
// If x == 0, the limit of log2(x) as x -> 0 = -infinity.
// log2(-ve) gives a complex result.
if (x <= 0)
{
fix16_error_occurred = true;
return fix16_overflow;
}
while (x >= fix16_from_int(2))
{
result++;
x = fix16_rs(x);
}
while (x < fix16_one)
{
result--;
x <<= 1;
}
if (x == 0) return (result << 16);
for (i = 16; i > 0; i--)
{
x = fix16_mul(x, x);
result <<= 1;
if (x >= fix16_from_int(2))
{
result |= 1;
x = fix16_rs(x);
}
}
#ifndef FIXMATH_NO_ROUNDING
x = fix16_mul(x, x);
if (x >= fix16_from_int(2)) result++;
#endif
return result;
}