forked from brandon-rhodes/pycon-pandas-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
script.txt
230 lines (160 loc) · 4.14 KB
/
script.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
Session 1
=========
You should do install if you have not already.
We have Internet! But, I have USB keys too.
Format: lesson, exercises, solutions.
Open Exercise-1
Point out .from_csv functions
VIEWING
len(titles)
titles.head() and .head(20)
titles.tail() and .tail(10)
titles
FILTERING
h = titles.head()
h['year'] or h.year
h.year + 1000
h.year - 2000
h.year > 1960
h[h.year > 1960]
h[h.year > 1960 & h.year < 1970]
h[(h.year > 1960) & (h.year < 1970)]
t.year // 10 * 10
h[h.title == '...']
SORTING
titles.sort_values(['title'])
titles.sort_values(['year'])
titles.sort_values(['year', 'title'])
Session 2
=========
STRING METHODS
h.str.len()
h.str.startswith(s)
h.str.extract(RE)
AGGREGATION
titles.year.value_counts()
titles.year.value_counts().plot() whoops!
titles.year.index
titles.year.value_counts().sort_index().plot()
titles.year.value_counts().sort_index().plot(kind='bar')
c = cast
c = c[c.character == 'Kermit the Frog]
c.plot(x='year', y='n', kind='scatter')
COLUMNS
Can be hard to see data
c = cast
c = c[c.character == 'Kermit the Frog']
c = c[['year', 'n']]
c
Can also:
c[['year']]
Session 3
=========
INDEXES - SPEED
%%time cast[cast.title == 'Sleuth']
c = cast.set_index(['title'])
%%time c.loc['Sleuth']
c = cast.set_index(['title']).sort_index()
%%time c.loc['Sleuth']
c = cast.set_index(['title', 'year']).sort_index()
c.loc['Sleuth']
c.loc['Sleuth',1996]
c.loc[('Sleuth',1996),'character']
c.loc[('Sleuth',1996),('character','n')]
.reset_index('title')
.reset_index('year')
.reset_index(['title', 'year'])
.reset_index()
INDEXES - GROUP BY
c = cast
c = c[c.name == 'George Clooney']
c.groupby(['title', 'year', 'character']).size()
c = cast
c = c[c.name == 'George Clooney']
c.groupby(['character', 'title', 'year']).size()
c = cast
c = c[c.name == 'George Clooney']
c.groupby(['character']).size()
# How many times has he had two roles in the same film?
c = cast
c = c[c.name == 'George Clooney']
c = c.groupby(['year', 'title']).size()
c[c > 1]
c = cast
c = c[c.name == 'George Clooney']
c.groupby([c.year // 10 * 10, 'character']).size()
c = cast
c = c[c.name == 'George Clooney']
c.groupby(['character', c.year // 10 * 10]).size()
TODO: mean min max!
Session 4
=========
UNSTACK
c = cast
c = c[(c.character == 'Kermit the Frog') | (c.character == 'Oscar the Grouch')]
g = c.groupby(['character', c.year // 10 * 10]).size()
g
How can we compare years? Unstack!
g.unstack('year')
g.unstack('character')
u = g.unstack('character')
u['difference'] = u['Kermit the Frog'] - u['Oscar the Grouch']
u
But, NaN.
u = g.unstack('character').fillna(0)
u['difference'] = u['Kermit the Frog'] - u['Oscar the Grouch']
u
THE DANGERS OF UNSTACK
Do it again? Oh no, we get a series!
.stack() again to repair damage, BUT can devolve to series again.
PLOTTING
Ratio?
u = g.unstack('character')
total = u['Oscar the Grouch'] + u['Kermit the Frog']
u['difference'] = u['Oscar the Grouch'] / total
u.difference.plot(ylim=[0,1])
Indexing and grouping has been moving our data LEFT.
"Unstacking" moves it UP, to columns! Stacking, DOWN.
Session 5
=========
r = release_dates
r = r[r.title == 'Inception']
r.date.dt.year
year month date dayofweek dayofyear
MERGE
What if we were interested in fetching release dates,
NOT by information in that table itself,
but by information over in "cast"?
c = cast
c = c[c.name == 'Ellen Page']
c = c.merge(release_dates)
c
Session 6
=========
c = cast
c = c[c.n <= 2]
c = c[c.name == 'Cary Grant']
c = c.merge(cast, on=['title', 'year'])
c = c[c.n_y <= 2]
c = c[c.name_y != 'Cary Grant']
c = c[['title', 'year', 'name_x', 'name_y']]
c
c.groupby('name_y').size().order(ascending=False)
reindex? or what? yeah.
.dropna()
.info()
Pivot
r = release_dates
r = r[r.title.str.startswith('Star Wars: Episode')]
r = r[r.country.str.startswith('U')]
r.pivot('title', 'country', 'date')
which is the same as
r.set_index(['title', 'country'])[['date']].unstack()
.rename(columns={...})
.concat(df)
Thoughts for later
==================
(who had which co-stars how often)
(what pairs of co-stars have appeared the most often together)
Can you use merge to find who was in movies with each other?
Fix later: second exercise s/hamlet/batman/