Skip to content

Latest commit

 

History

History
196 lines (120 loc) · 5.37 KB

README.md

File metadata and controls

196 lines (120 loc) · 5.37 KB

README

This is my PyTorch implementation of YOLO v1 from scratch, which includes scripts for train/val and test.

It not only helps me gain learning experience of using PyTorch, but also serves as a framework for One-Stage Detector facilitates future development. Please See Descriptions.

This implementation pass sanity check.

Requirements

Packages

  • Python 3.7

  • CUDA 10.0

  • PyTorch 1.1

  • Numpy >= 1.15

  • Scikit-image >= 0.14

  • Matplotlib >= 2.2.3

Hardware

  • 2 GPUs each with at least 11 GB RAM.

Descriptions

Modules

  • utils.py -- data format transformation and performance evaluation

  • draw.py -- output visualization

  • dataset.py -- dataset and dataloader

  • model.py -- define network architecture

  • model_parallel.py -- build model in parallel (placing 2 different sub-networks of the model onto 2 GPUs)

  • train.py -- calculate loss

Scripts

  • train_model_parallel.py -- train model on VOC

  • test_voc.py -- test model on VOC

Usage

Warning: Since Pytorch does not come with the same padding option, minor modification is required:

Step 1: Modify conv module

Go to PyTorch site package folder (e.g. /venv/lib/python3.7/site-packages/torch/nn/modules/conv.py).

Define conv2d_same_padding as follows.

def conv2d_same_padding(input, weight, bias=None, stride=1, padding=1, dilation=1, groups=1):

    input_rows = input.size(2)
    filter_rows = weight.size(2)
    effective_filter_size_rows = (filter_rows - 1) * dilation[0] + 1
    out_rows = (input_rows + stride[0] - 1) // stride[0]
    padding_needed = max(0, (out_rows - 1) * stride[0] + effective_filter_size_rows -
              input_rows)
    padding_rows = max(0, (out_rows - 1) * stride[0] +
                    (filter_rows - 1) * dilation[0] + 1 - input_rows)
    rows_odd = (padding_rows % 2 != 0)
    padding_cols = max(0, (out_rows - 1) * stride[0] +
                    (filter_rows - 1) * dilation[0] + 1 - input_rows)
    cols_odd = (padding_rows % 2 != 0)

    if rows_odd or cols_odd:
        input = F.pad(input, [0, int(cols_odd), 0, int(rows_odd)])

    return F.conv2d(input, weight, bias, stride,
              padding=(padding_rows // 2, padding_cols // 2),
              dilation=dilation, groups=groups)

Modify forward function in class Conv2d( _ConvNd) by replacing F.conv2d with conv2d_same_padding.

class Conv2d( _ConvNd):

    @weak_script_method
    def forward(self, input):
        #return F.conv2d(input, self.weight, self.bias, self.stride,
        #                        self.padding, self.dilation, self.groups)
        return conv2d_same_padding(input, self.weight, self.bias, self.stride,
                    self.padding, self.dilation, self.groups) ## same padding like TensorFlow    

Step 2: Download data

Please follow instructions Get The Pascal VOC Data and Generate Label for VOC at https://pjreddie.com/darknet/yolo/.

Warning: Make sure you see these in the dataset directory (e.g. folder VOC_yolo_format):

2007_test.txt   VOCdevkit
2007_train.txt  voc_label.py
2007_val.txt    VOCtest_06-Nov-2007.tar
2012_train.txt  VOCtrainval_06-Nov-2007.tar
2012_val.txt    VOCtrainval_11-May-2012.tar

Step 3: Train model

Default settings

batch_size = 32
use_float64 = False
use_scheduler = True
use_bn = True
learning_rate = 1e-5
model_weights = None
phases = ['train', 'val']

Note: For sanity check, set use_bn = False and phase = ['train'] instead.

How to run?

$ python train_model_parallel.py -n [num_epoch] -t [train_txt]

Outputs

Training log, plots, checkpoints and best weights will be automatically saved in these folders.

            ./log
            ./plot
            ./checkpoints
            ./weights

Experiments

Sanity Check

Overfit the model with two samples.

Set regularization to zero by use_bn = False, and use train mode ONLY via phase = ['train'].

Default settings

num_epoch = 150
use_float64 = False
use_scheduler = False
use_bn = False
phase = ['train']
learning_rate = 1e-5
model_weights = None   

Detections

The following shows the detection output of epoch 25, 50, 100 and 150 respectively. Model converges after 100 epochs with loss close to 0 and mAP equals 1.0.

Notes:

  • By VOC convention, IOU >=0.5 is considered as True Positive.

  • Bounding boxes with confidence_score <= 0.1 will be filtered out. To customize, go to utils.py, and declare your preferred value for conf_threshold in prediction2detection().

image 1 epoch = 25 image 2 epoch = 50

image 3 epoch = 100 image 4 epoch = 150 image gt Ground Truth

Loss

image loss

mAP

image mAP

Reference

[1] You Only Look Once: Unified, Real-Time Object Detection. https://pjreddie.com/media/files/papers/yolo.pdf