forked from zzzheng/pytorch-yolo-v1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_model_parallel.py
264 lines (209 loc) · 9.72 KB
/
main_model_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
'''
This script implement Model Parallel.
Output to folders:
./log
./plot
./checkpoints
./weights
'''
import time
import copy
import os.path
import matplotlib.pyplot as plt
from dataset import *
from model_parallel import *
from draw import *
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.optim.lr_scheduler import StepLR
# def train(num_epoch, dataloader, model, optimizer, learning_rate=1e-4, scheduler=None,
# phases=['train'], use_float64=True, checkpoint_interval=10):
def train(num_epoch, train_txt, val_txt, model, optimizer, learning_rate=1e-4, scheduler=None,
phases=['train'], use_float64=True, use_visualization=False, checkpoint_interval=10):
# suffix
if scheduler is not None:
suffix = '_lr={}_ep={}_w'.format(learning_rate, num_epoch)
else:
suffix = '_lr={}_ep={}_wo'.format(learning_rate, num_epoch)
# Outputs
fd_log = './log'
if not os.path.exists(fd_log):
os.mkdir(fd_log)
print('{} not exists, it has been created.'.format(fd_log))
log_file = 'log' + suffix + '.txt'
if os.path.exists(log_file):
os.remove(log_file)
print('"{}" exists, it has been removed.'.format(log_file))
fd_plot = './plot'
if not os.path.exists(fd_plot):
os.mkdir(fd_plot)
print('{} not exists, it has been created.'.format(fd_plot))
fd_checkpoints = './checkpoints'
if not os.path.exists(fd_checkpoints):
os.mkdir(fd_checkpoints)
print('{} not exists, it has been created.'.format(fd_checkpoints))
fd_weights = './weights'
if not os.path.exists(fd_weights):
os.mkdir(fd_weights)
print('{} not exists, it has been created.'.format(fd_weights))
# Dataset & Dataloader
voc2012_train = VOC(train_txt, IMG_WIDTH, IMG_HEIGHT, data_transform)
voc2012_val = VOC(val_txt, IMG_WIDTH, IMG_HEIGHT, data_transform)
dataloader = dict()
dataloader['train'] = DataLoader(voc2012_train, batch_size=batch_size, shuffle=True)
dataloader['val'] = DataLoader(voc2012_val, batch_size=batch_size, shuffle=True)
# Train
epoch_loss_hist = dict()
epoch_mAP_hist = dict()
for elem in phases:
epoch_loss_hist[elem] = []
epoch_mAP_hist[elem] = []
best_mAP = -1000.0
min_loss = 1e10
for epoch in range(num_epoch):
since = time.time()
print('\n-----------------------------------------')
print('Epoch {}/{}'.format(epoch, num_epoch - 1))
y_out_epoch = torch.Tensor().to("cuda:1") # record all output in a single epoch
if use_float64:
y_out_epoch = y_out_epoch.double()
img_name_epoch = []
for phase in phases:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0
# Step 1: forward for all, and backward if in train phase
for i, (image_batch, label_batch, img_name_batch) in enumerate(dataloader[phase]):
image_batch = image_batch.to('cuda:0')
label_batch = label_batch.to('cuda:1')
if use_float64:
image_batch = image_batch.double()
label_batch = label_batch.double()
# zero the parameter gradients
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
# 1.1 forward
y_out = model(image_batch)
print('y_out mean = ', torch.mean(y_out))
print('y_out std = ', torch.std(y_out))
y_out_epoch = torch.cat((y_out_epoch, y_out), 0)
img_name_epoch += img_name_batch
# loss
loss = calc_loss(y_out.clone(), label_batch.clone(), device, use_float64)
running_loss += loss.item() * image_batch.size(0)
if scheduler is not None:
scheduler.step(loss) # lr scheduler
# 1.2 backward
if phase == 'train':
loss.backward()
torch.nn.utils.clip_grad_value_(model.parameters(), clip_value=1) # gradient clip
optimizer.step()
print('{}\tEpoch = {}\tBatch = {}\tLoss = {:.4f}'.format(phase, epoch, i, loss.item()))
# Step 2: evaluation
iou_threshold = 0.5
det = prediction2detection(y_out_epoch, img_name_epoch)
if phase == 'train':
ground_truth = ground_truth_detection(voc2012_train.label_list)
else:
ground_truth = ground_truth_detection(voc2012_val.label_list)
res = evaluate_IOU(det, ground_truth, device, use_float64=use_float64)
res_tp_fp = evaluate_TP_FP(res, iou_threshold)
results, acc_tps, acc_fps, precisions, recalls = evaluate_precision_recall(res_tp_fp, iou_threshold, ground_truth)
mAP = calc_mean_average_precision(precisions, recalls)
epoch_loss = running_loss / len(dataloader[phase].dataset)
epoch_loss_hist[phase].append(epoch_loss)
epoch_mAP_hist[phase].append(mAP)
time_elapsed = time.time() - since
# Step 3: log, save weights
# log
print('{}\tLoss = {:.4f}\tmAP = {:.4f}\ttime_elapsed = {:.2f} s\n'.format(phase, epoch_loss, mAP, time_elapsed))
f = open(os.path.join(fd_log, log_file), 'a')
f.write('{}\tEpoch = {}\tLoss = {:.4f}\tmAP = {:.4f}\ttime_elapsed = {:.2f} s\n'.format(
phase, epoch, epoch_loss, mAP, time_elapsed))
f.close()
# save weights
# - min loss
if phase == 'val' and epoch_loss < min_loss:
torch.save(copy.deepcopy(model.state_dict()), os.path.join(fd_weights, 'min_loss_weights' + suffix + '.pth'))
torch.save(copy.deepcopy(model.state_dict()), os.path.join(fd_weights, 'min_loss_weights.pth'))
min_loss = epoch_loss
print('[val] A smaller loss is found. \nModel saved.')
# - best mAP
# if mAP > best_mAP:
if phase == 'val' and mAP > best_mAP:
best_mAP = mAP
torch.save(copy.deepcopy(model.state_dict()),
os.path.join(fd_weights, 'best_model_weights' + suffix + '.pth'))
print('[val] Best model is saved.')
# - checkpoint
if (epoch + 1) % checkpoint_interval == 0:
torch.save(copy.deepcopy(model.state_dict()),
os.path.join(fd_checkpoints, 'checkpoint_weights_ep{}.pth'.format(epoch+1)))
print('Checkpoint is saved at {}.'.format(fd_checkpoints))
# Step 4: visualization
if use_visualization:
visualize(y_out_epoch, img_name_epoch, voc2012_train.image_list, fd_plot)
print('Visualization completed.')
# plot history
plt.figure(1)
for p in phases:
color = 'r' if p == 'train' else 'm'
plt.plot(range(epoch+1), epoch_loss_hist[p], color)
plt.title('Loss lr = {}'.format(learning_rate))
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(phases)
plt.savefig(os.path.join(fd_plot, 'loss_history' + suffix + '.png'))
plt.figure(2)
for p in phases:
color = 'b' if p == 'train' else 'g'
plt.plot(range(epoch+1), epoch_mAP_hist[p], color)
plt.title('mAP lr = {}'.format(learning_rate))
plt.xlabel('Epoch')
plt.ylabel('mAP')
plt.legend(phases)
plt.savefig(os.path.join(fd_plot, 'mAP_history' + suffix + '.png'))
return min_loss, best_mAP
if __name__ == "__main__":
# Memory / Storage
os.system('rm -rf checkpoints/ log/ weights/ plot/')
torch.cuda.empty_cache()
# Device
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
# Parameter
num_epoch = 150
batch_size = 32
use_float64 = False
use_scheduler = False
use_bn = False
learning_rate = 1e-5
# Weights
# model_weights = './results/1e-5_ep=1-10/checkpoint_weights_ep10.pth'
model_weights = None
# Dataset
# phases = ['train', 'val']
phases = ['train']
# train_txt = '/home/bizon/Dataset/VOC_yolo_format/2007_train.txt'
# val_txt = '/home/bizon/Dataset/VOC_yolo_format/2007_val.txt'
train_txt = '/home/bizon/Dataset/VOC_yolo_format/2012_sanity.txt'
val_txt = '/home/bizon/Dataset/VOC_yolo_format/2012_sanity.txt'
# Model
yolo_model = build_darknet_parallel(path=model_weights, use_bn=use_bn)
if use_float64:
yolo_model = yolo_model.double()
# Optimizer
optimizer = torch.optim.Adam(yolo_model.parameters(), lr=learning_rate, eps=1e-6)
# scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True) \
# if use_scheduler else None
scheduler = StepLR(optimizer, step_size=5, gamma=0.5, last_epoch=-1) if use_scheduler else None
################### Train ###################
print('\n\nlearning rate = ', learning_rate)
min_loss, best_mAP = train(num_epoch=num_epoch, train_txt=train_txt, val_txt=val_txt, phases=phases, model=yolo_model,
optimizer=optimizer, learning_rate=learning_rate, scheduler=scheduler,
checkpoint_interval=50, use_float64=use_float64, use_visualization=True)
print('=======================================')
print('Training completed.')
print('Best mAP = {:4f}'.format(best_mAP))
print('Min loss = {:4f}'.format(min_loss))
print('Done.')