forked from zzzheng/pytorch-yolo-v1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
227 lines (175 loc) · 8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
'''
This script implements the training procedure.
'''
from model import *
from utils import *
# import math
# import sys
import torch
from dataset import *
LAMBDA_COORD = 5
LAMBDA_NOOBJ = 0.5
def predict_one_bbox(P, G, device=torch.device("cpu"), use_float64=False):
"""
Tensor version of predict_one_box
Select ONE bounding box per grid cell.
Note:
YOLO predicts MULTIPLE bounding boxes per grid cell.
At training time we only want one bounding box predictor to be responsible for each object.
We assign one predictor to be “responsible” for predicting an object
based on which prediction has the highest current IOU with the ground truth.
:param P: Prediction tensor S*S*(B*5+C) with MULTIPLE bounding boxes per grid cell.
format < <x> <y> <w> <h> <confidence> > * B + <cls_prob>
:param G: GroundTruth tensor S*S*5
format <x> <y> <w> <h> <class name>
:return: Q: Prediction tensor S*S*(5+C) with SINGLE bounding box per grid cell.
format <x> <y> <w> <h> <confidence> <cls_prob>
"""
if P.size(0) != S or P.size(1) != S or P.size(2) != 5*B+C:
raise Exception("Tensor size not match")
# convert to image coordinate [0,1]
# #### Do ONLY once !!!
P = convert_coord_cell2img(P) # todo: not compatible
Q = torch.zeros(S, S, 5+C) # init
if use_float64:
Q = Q.double()
select = torch.tensor(0).to(device) # init
for i in range(S): # loop over each grid cell
for j in range(S):
# localization loss
# boxes = torch.tensor([], dtype=torch.float32) # store all boxes' position (x, y, w, h)
# get all bbox assigned for this grid cell
# format < <x> <y> <w> <h> <confidence>
for b in range(B):
if b == 0:
boxes = P[i, j, b*5: b*5+5].to(device)
else:
# boxes.append((P[i, j, b*5], P[i, j, b*5+1], P[i, j, b*5+2], P[i, j, b*5+3], P[i, j, b*5+4]))
boxes = torch.stack((boxes, P[i, j, b*5: b*5+5])).to(device)
# case 1: ground truth has bbox at this grid cell
# Select one box has the highest IOU with ground truth
if len(G[i, j, :].nonzero()) > 1:
# max_iou = 0 # init
max_iou = torch.tensor([0.]).to(device) # init
if use_float64:
max_iou = max_iou.double()
groundtruth_box = torch.clone(G[i, j, :4])
for b in range(B):
# iou = calc_IOU(groundtruth_box, boxes[b][:-1])
iou = calc_IOU(groundtruth_box, boxes[b][:-1], device, use_float64) # use Tensor version
if iou > max_iou:
max_iou = iou
select = torch.tensor(b).to(device)
# case 2: ground truth has NO bbox at this grid cell
# Pick one box with highest confidence
# todo: slightly different from the original paper
else:
max_confidence = torch.tensor(0.).to(device) # init
if use_float64:
max_confidence = max_confidence.double()
for b in range(B):
confidence = boxes[b][-1]
if use_float64:
confidence = confidence.double()
if confidence > max_confidence:
max_confidence = confidence
select = torch.tensor(b).to(device)
# classification loss
# copy the selected box info to Q
Q[i, j, :5] = boxes[select] # bbox (pos + confidence)
Q[i, j, 5:] = P[i, j, -C:] # class probabilities
return Q
def calc_loss_single(P, G, use_float64=False):
"""
Compute multi-part loss function on a Single instance, for a Single bbox.
:param P: Prediction tensor S*S*(5+C) with SINGLE bounding box per grid cell.
:param G: GroundTruth tensor S*S*5
:return: loss
"""
if P.size(0) != S or P.size(1) != S or P.size(2) != 5+C:
print(" Prediction tensor size is ", P.size())
raise Exception("Tensor size not match")
if G.size(0) != S or G.size(1) != S or G.size(2) != 5:
print(" GroundTruth tensor size is ", G.size())
raise Exception("Tensor size not match")
loss = torch.zeros(1) # init
if use_float64:
loss = loss.double()
for i in range(S):
for j in range(S):
# case 1: grid cell HAS object
if len(G[i, j, :].nonzero()) > 1:
# localization
loss = loss + LAMBDA_COORD * (torch.pow(P[i, j, 0] - G[i, j, 0], 2) + torch.pow(P[i, j, 1] - G[i, j, 1], 2))
loss = loss + LAMBDA_COORD * (torch.pow(torch.sqrt(torch.abs(P[i, j, 2])) - torch.sqrt(torch.abs(G[i, j,2])), 2) \
+ torch.pow(torch.sqrt(torch.abs(P[i, j, 3])) - torch.sqrt(torch.abs(G[i, j, 3])), 2)) # org
# loss = loss + LAMBDA_COORD * (torch.sqrt(torch.abs(P[i, j, 2] - G[i, j, 2])) +
# torch.sqrt(torch.abs(P[i, j, 3] - G[i, j, 3]))) # ZZ
loss = loss + torch.pow(P[i, j, 4]-1, 2) # Ground truth confidence is constant 1
# classification
true_cls = G[i, j, -1].type(torch.int64)
true_cls_vec = torch.zeros(C)
true_cls_vec[true_cls] = torch.tensor(1)
pred_cls_vec = P[i, j, -C:]
if use_float64:
pred_cls_vec = pred_cls_vec.double()
true_cls_vec = true_cls_vec.double()
loss = loss + torch.sum(torch.pow(pred_cls_vec - true_cls_vec, 2))
# case 2: grid cell NO object
# classification
else:
loss = loss + LAMBDA_NOOBJ * torch.pow(P[i, j, 4]-0, 2) # Ground truth confidence is constant 0
return loss
def calc_loss(P_batch, G_batch, device=torch.device("cpu"), use_float64=False):
"""
Compute multi-part loss function on a Batch.
:param P_batch: Model Output.
Prediction tensor batch N*S*S*(5*B+C) with MULTIPLE bounding box per grid cell.
:param G_batch: GroundTruth tensor batch N*S*S*5
:return:
"""
if P_batch.size(0) != G_batch.size(0):
raise Exception("Batch size does not match.")
if len(P_batch.size()) != 4 or len(G_batch.size()) != 4:
raise Exception("Input or Ground truth is not a Batch. ")
total_loss = torch.tensor(0.0)
if use_float64:
total_loss.double()
for i in range(P_batch.size(0)):
P = P_batch[i]
G = G_batch[i]
Q = predict_one_bbox(P, G, device, use_float64) # predict ONE bbox for each Grid cell
total_loss = total_loss + calc_loss_single(Q, G, use_float64) # compute Loss for one instance
total_loss = total_loss / P_batch.size(0)
return total_loss
if __name__ == "__main__":
labels = read_labels('000001.txt')
G = labels2tensor(labels)
# Feed model
yolo_model = build_darknet()
# Data
X = torch.randn(20, 3, 448, 448) # image batch (random)
Y = torch.clamp(torch.randn(20, 7, 7, 5), 0, 1) # label batch (random)
# X.requires_grad = True
# Y.requires_grad = True
# Prediction
Y_out = yolo_model(X)
# Y_pred = [predict_one_bbox(Y_out[i].clone(), Y[i].clone()) for i in range(20)]
# Y_pred = torch.stack(Y_pred)
# Loss
total_loss = calc_loss(Y_out, Y)
print('total loss = ', total_loss)
# Optimizer
learning_rate = 1e-4
optimizer = torch.optim.Adam(yolo_model.parameters(), lr=learning_rate)
# Training
for t in range(30):
# forward pass
Y_out = yolo_model(X)
# compute loss
loss = calc_loss(Y_out.clone(), Y.clone())
print('\nEpoch = ', t, 'Loss = ', loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Done.')