-
Notifications
You must be signed in to change notification settings - Fork 85
/
ArrayProofScript.sml
964 lines (912 loc) · 35.8 KB
/
ArrayProofScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
(*
Proofs about the Array module.
*)
open preamble ml_translatorTheory ml_translatorLib cfLib
mlbasicsProgTheory ArrayProgTheory
val _ = new_theory"ArrayProof";
val _ = translation_extends "ArrayProg";
val array_st = get_ml_prog_state();
fun prove_array_spec op_name =
rpt strip_tac \\
xcf op_name array_st \\ TRY xpull \\
fs [cf_aw8alloc_def, cf_aw8sub_def, cf_aw8length_def, cf_aw8update_def,
cf_aalloc_empty_def, cf_aalloc_def, cf_asub_def, cf_alength_def, cf_aupdate_def] \\
irule local_elim \\ reduce_tac \\
fs [app_aw8alloc_def, app_aw8sub_def, app_aw8length_def, app_aw8update_def,
app_aalloc_def, app_asub_def, app_alength_def, app_aupdate_def] \\
xsimpl \\ fs [INT_def, NUM_def, WORD_def, w2w_def, UNIT_TYPE_def, REPLICATE] \\
TRY (simp_tac (arith_ss ++ intSimps.INT_ARITH_ss) [])
Theorem array_alloc_spec:
!n nv v.
NUM n nv ==>
app (p:'ffi ffi_proj) ^(fetch_v "Array.array" array_st) [nv; v]
emp (POSTv av. ARRAY av (REPLICATE n v))
Proof
prove_array_spec "Array.array"
QED
Theorem array_alloc_empty_spec:
!v.
UNIT_TYPE () v ⇒
app (p:'ffi ffi_proj) ^(fetch_v "Array.arrayEmpty" array_st) [v]
emp (POSTv av. ARRAY av [])
Proof
prove_array_spec "Array.arrayEmpty"
QED
Theorem array_sub_spec:
!a av n nv.
NUM n nv /\ n < LENGTH a ==>
app (p:'ffi ffi_proj) ^(fetch_v "Array.sub" array_st) [av; nv]
(ARRAY av a) (POSTv v. cond (v = EL n a) * ARRAY av a)
Proof
prove_array_spec "Array.sub"
QED
Theorem array_length_spec:
!a av.
app (p:'ffi ffi_proj) ^(fetch_v "Array.length" array_st) [av]
(ARRAY av a)
(POSTv v. cond (NUM (LENGTH a) v) * ARRAY av a)
Proof
prove_array_spec "Array.length"
QED
Theorem array_update_spec:
!a av n nv v.
NUM n nv /\ n < LENGTH a ==>
app (p:'ffi ffi_proj) ^(fetch_v "Array.update" array_st)
[av; nv; v]
(ARRAY av a)
(POSTv uv. cond (UNIT_TYPE () uv) * ARRAY av (LUPDATE v n a))
Proof
prove_array_spec "Array.update"
QED
Theorem array_fromList_spec:
!l lv a A.
LIST_TYPE A l lv /\ v_to_list lv = SOME a ==>
app (p:'ffi ffi_proj) ^(fetch_v "Array.fromList" array_st) [lv]
emp (POSTv av. ARRAY av a)
Proof
rpt strip_tac \\
xcf "Array.fromList" array_st \\
xfun_spec `f`
`!ls lsv i iv a l_pre rest ar.
NUM i iv /\ LENGTH l_pre = i /\
LIST_TYPE A ls lsv /\ v_to_list lsv = SOME a /\ LENGTH ls = LENGTH rest
==>
app p f [ar; lsv; iv]
(ARRAY ar (l_pre ++ rest))
(POSTv ret. & (ret = ar) * ARRAY ar (l_pre ++ a))` >- (
Induct
>- (rw[LIST_TYPE_def] \\
first_x_assum match_mp_tac \\
xmatch \\ xret \\
fs [LENGTH_NIL_SYM] \\
fs [semanticPrimitivesTheory.v_to_list_def] \\
xsimpl) \\
rw[LIST_TYPE_def] \\
fs[semanticPrimitivesTheory.v_to_list_def] \\
qpat_x_assum`_ = SOME _`mp_tac \\ CASE_TAC \\ rw[] \\
last_x_assum match_mp_tac \\
xmatch \\
Cases_on `rest` \\ fs[] \\
qmatch_assum_rename_tac`A h hv` \\
xlet `POSTv u. ARRAY ar (l_pre ++ hv::t)` >- (
xapp \\
instantiate \\
xsimpl ) \\
xlet `POSTv iv. ARRAY ar (l_pre ++ hv::t) * & NUM (LENGTH l_pre + 1) iv`
>- (
xapp \\
xsimpl \\
qexists_tac `&(LENGTH l_pre)` \\
fs [NUM_def, plus_def, integerTheory.INT_ADD]
) \\
once_rewrite_tac[CONS_APPEND] \\
rewrite_tac[APPEND_ASSOC] \\
xapp \\ xsimpl ) \\
Cases_on `l` >>
fs [LIST_TYPE_def] >>
rfs [] >>
xmatch
>- (
fs [semanticPrimitivesTheory.v_to_list_def] >>
rw [] >>
xlet `POSTv uv. &UNIT_TYPE () uv`
>- (
xret >>
xsimpl) >>
xapp >>
simp []) >>
rw [] >>
xlet `POSTv lv. &NUM (LENGTH t + 1) lv`
>- (
xapp >>
xsimpl >>
qexists_tac `h::t` >>
qexists_tac `A` >>
simp [LIST_TYPE_def, ADD1]) >>
xlet `POSTv av. ARRAY av (REPLICATE (LENGTH t + 1) v2_1)`
>- (
xapp >>
simp []) >>
fs [semanticPrimitivesTheory.v_to_list_def] >>
every_case_tac >>
fs [] >>
rw [] >>
first_x_assum (qspecl_then [`t`, `v2_2`, `Litv (IntLit &1)`, `x`, `[v2_1]`,
`REPLICATE (LENGTH t) v2_1`] mp_tac) >>
simp [LENGTH_REPLICATE] >>
qpat_x_assum`_ = list_type_num`(assume_tac o SYM) \\ fs[GSYM ADD1] \\
disch_then xapp_spec >>
xsimpl >>
rw [REPLICATE, GSYM ADD1]
QED
val eq_v_thm = fetch "mlbasicsProg" "eq_v_thm"
val eq_num_v_thm = MATCH_MP (DISCH_ALL eq_v_thm) (EqualityType_NUM_BOOL |> CONJUNCT1)
Triviality num_eq_thm:
!n nv x xv. NUM n nv /\ NUM x xv ==> (n = x <=> nv = xv)
Proof
metis_tac[EqualityType_NUM_BOOL, EqualityType_def]
QED
Theorem array_tabulate_spec:
!n nv f fv (A: 'a -> v -> bool).
NUM n nv /\ (NUM --> A) f fv ==>
app (p:'ffi ffi_proj) ^(fetch_v "Array.tabulate" array_st) [nv; fv]
emp (POSTv av. SEP_EXISTS vs. ARRAY av vs * cond (EVERY2 A (GENLIST f n) vs))
Proof
rpt strip_tac
\\ xcf "Array.tabulate" array_st
\\ xfun_spec `u`
`!x xv l_pre rest av.
NUM x xv /\ LENGTH l_pre = x /\ LENGTH l_pre + LENGTH rest = n ==>
app p u [av; xv]
(ARRAY av (l_pre ++ rest))
(POSTv ret. SEP_EXISTS vs. & (ret = av) * ARRAY av (l_pre ++ vs) * cond (EVERY2 A (GENLIST (\i. f (x + i)) (n - x)) vs))`
>- (Induct_on `n - x`
>- (rw [] \\ first_x_assum match_mp_tac
\\ xlet `POSTv bv. & BOOL (xv=nv) bv * ARRAY av l_pre`
>- (
xapp_spec eq_num_v_thm \\ rw[BOOL_def] \\ xsimpl
\\ `LENGTH rest = 0` by decide_tac
\\ `xv = nv` by fs [NUM_def, INT_def]
\\ instantiate \\ fs [])
\\ xif >- (xret \\ xsimpl \\ `LENGTH rest = 0` by decide_tac \\ fs[] )
\\ fs [NUM_def, INT_def] \\ rfs[])
\\ rw[] \\ first_assum match_mp_tac
\\ xlet `POSTv bv. & BOOL (xv = nv) bv * ARRAY av (l_pre ++ rest)`
>- (xapp_spec eq_num_v_thm \\ xsimpl \\ instantiate \\ fs[BOOL_def, NUM_def, INT_def])
\\ xif
>- (xret \\ xsimpl \\ `LENGTH rest = 0` by fs [NUM_def, INT_def]
\\ fs [GENLIST, LENGTH_NIL])
\\ xlet `POSTv val. ARRAY av (l_pre ++ rest) * & A (f (LENGTH l_pre)) val`
>- (xapp \\ xsimpl \\ instantiate)
\\ xlet `POSTv u. ARRAY av (LUPDATE val (LENGTH l_pre) (l_pre ++ rest))`
>- (xapp \\ xsimpl \\ instantiate \\ `LENGTH l_pre + LENGTH rest <> LENGTH l_pre` by metis_tac[num_eq_thm] \\ fs[])
\\ xlet_auto
\\ fs [plus_def]
THEN1 xsimpl
\\ xapp \\ xsimpl \\ cases_on `rest`
>- (`xv = nv` by fs [NUM_def, INT_def])
\\ qexists_tac `t` \\ qexists_tac `l_pre ++ [val]`
\\ fs [LENGTH, ADD1, GSYM CONS_APPEND, lupdate_append2] \\ rw[GENLIST_CONS, GSYM ADD1, o_DEF] \\ fs [ADD1,NUM_def,GSYM integerTheory.INT_ADD]) >>
Cases_on `n` >>
fs [NUM_def, INT_def] >>
rfs []
>- (
xlet `POSTv bv. &BOOL T bv`
>- (
xapp_spec eq_num_v_thm >>
xsimpl) >>
xif >>
qexists_tac `T` >>
simp [] >>
xlet `POSTv uv. &UNIT_TYPE () uv`
>- (
xret >>
xsimpl) >>
xapp >>
xsimpl) >>
xlet `POSTv bv. &BOOL F bv`
>- (
xapp_spec eq_num_v_thm >>
xsimpl) >>
xif >>
qexists_tac `F` >>
simp [] >>
xlet `POSTv xv. &A (f 0) xv`
>- (
xapp >>
simp []) >>
xlet `POSTv av. ARRAY av (REPLICATE (SUC n') xv)`
>- (
xapp >>
simp [NUM_def] >>
xsimpl) >>
first_x_assum (qspecl_then [`[xv]`, `REPLICATE n' xv`, `av`] mp_tac) >>
simp [LENGTH_REPLICATE] >>
disch_then xapp_spec >>
xsimpl >>
rw [REPLICATE, GENLIST_CONS] >>
simp [combinTheory.o_DEF, ADD1]
QED
(*
val _ = show_types := false
val _ = hide_environments true
val res = max_print_depth := 20
val _ = show_types := true
val _ = hide_environments false
val res = max_print_depth := 100
*)
Triviality less_than_length_thm:
!xs n. (n < LENGTH xs) ==> (?ys z zs. (xs = ys ++ z::zs) /\ (LENGTH ys = n))
Proof
rw[] \\
qexists_tac`TAKE n xs` \\
rw[] \\
qexists_tac`HD (DROP n xs)` \\
qexists_tac`TL (DROP n xs)` \\
Cases_on`DROP n xs` \\ fs[] \\
metis_tac[TAKE_DROP,APPEND_ASSOC,CONS_APPEND]
QED
Triviality lupdate_breakdown_thm:
!l val n. n < LENGTH l
==> LUPDATE val n l = TAKE n l ++ [val] ++ DROP (n + 1) l
Proof
rw[] \\ drule less_than_length_thm
\\ rw[] \\ simp_tac std_ss [TAKE_LENGTH_APPEND, GSYM APPEND_ASSOC, GSYM CONS_APPEND]
\\simp_tac std_ss [DROP_APPEND2]
\\ simp_tac std_ss [GSYM CONS_APPEND]
\\ EVAL_TAC \\ rw[lupdate_append2]
QED
Theorem array_copy_aux_spec:
!src n srcv dstv di div nv max maxv bfr mid afr.
NUM di div /\ NUM n nv /\ NUM max maxv /\
di = LENGTH bfr/\ LENGTH mid = max - n /\ n <= max /\
max <= LENGTH src
==> app (p:'ffi ffi_proj) Array_copy_aux_v [srcv; dstv; div; maxv; nv]
(ARRAY srcv src * ARRAY dstv (bfr ++ mid ++ afr))
(POSTv uv. ARRAY srcv src *
ARRAY dstv (bfr ++ (TAKE (max -n) (DROP n src)) ++ afr))
Proof
gen_tac \\ gen_tac \\ Induct_on `max - n` >>
rpt strip_tac \\ xcf_with_def Array_copy_aux_v_def
>-(xlet_auto >> (xsimpl >> xif) >>
instantiate >> xcon >> xsimpl >> metis_tac[TAKE_0,LENGTH_NIL]) >>
xlet_auto >- xsimpl >>
xif >> instantiate >>
NTAC 4 (xlet_auto >- xsimpl) >>
xapp >> xsimpl >>
cases_on`mid` >> fs[] >>
qexists_tac`1 + n` >> qexists_tac`t` >>
qexists_tac`max` >> qexists_tac`bfr ++ [EL n src]` >> fs[] >>
qexists_tac`afr` >> rw[]
>-(`LENGTH bfr <= LENGTH bfr` by fs[] >>
imp_res_tac LUPDATE_APPEND2 >>
first_x_assum (assume_tac o Q.SPECL[`EL n src`, `[h] ⧺ t ⧺ afr`]) >>
fs[LUPDATE_def]) >>
cases_on`DROP n src` >- fs[DROP_NIL] >>
`EL (0 + n) src = EL 0 (DROP n src)` by fs[EL_DROP] >> fs[] >>
`DROP 1 (DROP n src) = t'` by fs[GSYM DROP_DROP_T] >>
fs[DROP_DROP_T]
QED
Theorem array_copy_spec:
!src srcv bfr mid afr dstv di div.
NUM di div /\ LENGTH src = LENGTH mid /\ di = LENGTH bfr
==> app (p:'ffi ffi_proj) ^(fetch_v "Array.copy" array_st) [srcv; dstv; div]
(ARRAY srcv src * ARRAY dstv (bfr ++ mid ++ afr))
(POSTv uv. ARRAY srcv src * ARRAY dstv (bfr ++ src ++ afr))
Proof
rpt strip_tac \\
xcf "Array.copy" array_st \\
xlet_auto >- xsimpl >> xapp >> xsimpl >> instantiate >>
fs[] >> instantiate >> metis_tac[TAKE_LENGTH_ID]
QED
Theorem array_app_aux_spec:
∀l idx len_v idx_v a_v f_v eff.
NUM (LENGTH l) len_v ∧
NUM idx idx_v ∧
idx ≤ LENGTH l ∧
(!n.
n < LENGTH l ⇒
app p f_v [EL n l] (eff l n) (POSTv v. &UNIT_TYPE () v * (eff l (n+1))))
⇒
app (p:'ffi ffi_proj) Array_app_aux_v [f_v; a_v; len_v; idx_v]
(eff l idx * ARRAY a_v l)
(POSTv v. &UNIT_TYPE () v * (eff l (LENGTH l)) * ARRAY a_v l)
Proof
ntac 2 gen_tac >>
completeInduct_on `LENGTH l - idx` >>
rpt strip_tac >>
xcf_with_def Array_app_aux_v_def >>
rw [] >>
xlet `POSTv env_v. eff l idx * ARRAY a_v l * &BOOL (idx = LENGTH l) env_v`
>- (
xapp_spec eq_num_v_thm >>
xsimpl >>
fs [NUM_def, BOOL_def, INT_def]) >>
xif
>- (
xret >>
xsimpl) >>
xlet `POSTv x_v. eff l idx * ARRAY a_v l * &(EL idx l = x_v)`
>- (
xapp >>
xsimpl >>
qexists_tac `idx` >>
rw []) >>
xlet `POSTv u_v. eff l (idx + 1) * ARRAY a_v l`
>- (
first_x_assum (qspec_then `idx` mp_tac) >>
simp [] >>
disch_then xapp_spec >>
xsimpl) >>
xlet `POSTv next_idx_v. eff l (idx + 1) * ARRAY a_v l * & NUM (idx + 1) next_idx_v`
>- (
xapp >>
xsimpl >>
fs [NUM_def, INT_def] >>
intLib.ARITH_TAC) >>
first_x_assum xapp_spec >>
simp []
QED
(* eff is the effect of executing the function on the first n elements of l *)
Theorem array_app_spec:
∀l a_v f_v eff.
(!n.
n < LENGTH l ⇒
app p f_v [EL n l] (eff l n) (POSTv v. &UNIT_TYPE () v * (eff l (n+1))))
⇒
app (p:'ffi ffi_proj) ^(fetch_v "Array.app" array_st) [f_v; a_v] (eff l 0 * ARRAY a_v l)
(POSTv v. &UNIT_TYPE () v * (eff l (LENGTH l)) * ARRAY a_v l)
Proof
rw [] >>
xcf "Array.app" array_st >>
xlet `POSTv len_v. eff l 0 * ARRAY a_v l * &NUM (LENGTH l) len_v`
>- (
xapp >>
xsimpl) >>
xapp >>
rw [NUM_def]
QED
Theorem array_appi_aux_spec:
∀l idx len_v idx_v a_v f_v eff.
NUM (LENGTH l) len_v ∧
NUM idx idx_v ∧
idx ≤ LENGTH l ∧
(!n n_v.
n < LENGTH l ∧
NUM n n_v ⇒
app p f_v [n_v; EL n l] (eff l n)
(POSTv v. &UNIT_TYPE () v * (eff l (n+1))))
⇒
app (p:'ffi ffi_proj) Array_appi_aux_v [f_v; a_v; len_v; idx_v]
(eff l idx * ARRAY a_v l)
(POSTv v. &UNIT_TYPE () v * (eff l (LENGTH l)) * ARRAY a_v l)
Proof
ntac 2 gen_tac >>
completeInduct_on `LENGTH l - idx` >>
rpt strip_tac >>
xcf_with_def Array_appi_aux_v_def >>
rw [] >>
xlet `POSTv env_v. eff l idx * ARRAY a_v l * &BOOL (idx = LENGTH l) env_v`
>- (
xapp_spec eq_num_v_thm >>
xsimpl >>
fs [NUM_def, BOOL_def, INT_def]) >>
xif
>- (
xret >>
xsimpl) >>
xlet `POSTv x_v. eff l idx * ARRAY a_v l * &(EL idx l = x_v)`
>- (
xapp >>
xsimpl >>
qexists_tac `idx` >>
rw []) >>
xlet `POSTv u_v. eff l (idx + 1) * ARRAY a_v l`
>- (
first_x_assum (qspec_then `idx` mp_tac) >>
simp [] >>
disch_then xapp_spec >>
xsimpl) >>
xlet `POSTv next_idx_v. eff l (idx + 1) * ARRAY a_v l * & NUM (idx + 1) next_idx_v`
>- (
xapp >>
xsimpl >>
fs [NUM_def, INT_def] >>
intLib.ARITH_TAC) >>
first_x_assum xapp_spec >>
simp []
QED
(* eff is the effect of executing the function on the first n elements of l *)
Theorem array_appi_spec:
∀l a_v f_v eff.
(!n n_v.
n < LENGTH l ∧
NUM n n_v ⇒
app p f_v [n_v; EL n l] (eff l n)
(POSTv v. &UNIT_TYPE () v * (eff l (n+1))))
⇒
app (p:'ffi ffi_proj) ^(fetch_v "Array.appi" array_st) [f_v; a_v]
(eff l 0 * ARRAY a_v l)
(POSTv v. &UNIT_TYPE () v * (eff l (LENGTH l)) * ARRAY a_v l)
Proof
rw [] >>
xcf "Array.appi" array_st >>
xlet `POSTv len_v. eff l 0 * ARRAY a_v l * &NUM (LENGTH l) len_v`
>- (
xapp >>
xsimpl) >>
xapp >>
rw [NUM_def]
QED
Triviality list_rel_take_thm:
!A xs ys n.
LIST_REL A xs ys ==> LIST_REL A (TAKE n xs) (TAKE n ys)
Proof
Induct_on `xs` \\ Induct_on `ys` \\ rw[LIST_REL_def, TAKE_def]
QED
Triviality drop_pre_length_thm:
!l. l <> [] ==> (DROP (LENGTH l - 1) l) = [(EL (LENGTH l - 1) l)]
Proof
rw[] \\ Induct_on `l` \\ rw[DROP, LENGTH, DROP_EL_CONS, DROP_LENGTH_NIL]
QED
(*
Definition ARRAY_TYPE_def:
ARRAY_TYPE A a av = SEP_EXISTS vs. ARRAY av vs * & LIST_REL A a vs
End
*)
Theorem array_modify_aux_spec:
!a n f fv vs av max maxv nv A.
NUM max maxv /\ LENGTH a = max /\ NUM n nv /\ (A --> A) f fv /\ n <= max /\ LIST_REL A a vs
==> app (p:'ffi ffi_proj) Array_modify_aux_v [fv; av; maxv; nv]
(ARRAY av vs) (POSTv uv. SEP_EXISTS vs1 vs2. ARRAY av (vs1 ++ vs2) * cond(EVERY2 A (TAKE n a) vs1) * cond(EVERY2 A (MAP f (DROP n a)) vs2))
Proof
gen_tac \\ gen_tac \\ Induct_on `LENGTH a - n` \\ rpt strip_tac
>-(xcf_with_def Array_modify_aux_v_def
\\ rw[] \\ xlet `POSTv bool. & (BOOL (nv = maxv) bool) * ARRAY av vs`
>- (xapp_spec eq_num_v_thm \\ xsimpl \\ instantiate \\ fs[NUM_def, INT_def, BOOL_def])
\\ xif
>- (xcon \\ xsimpl \\ fs[NUM_def, INT_def, BOOL_def] \\ rw[DROP_LENGTH_NIL])
\\ `LENGTH a = n` by DECIDE_TAC \\ fs[NUM_def, INT_def] \\ rfs[])
\\ xcf_with_def Array_modify_aux_v_def
\\ xlet `POSTv bool. & (BOOL (nv = maxv) bool) * ARRAY av vs`
>- (xapp_spec eq_num_v_thm \\ xsimpl \\ instantiate \\ fs[NUM_def, INT_def, BOOL_def])
\\ xif
>- (xcon \\ xsimpl \\ qexists_tac `vs` \\ fs[NUM_def, INT_def, BOOL_def] \\ rw[DROP_LENGTH_NIL])
\\ xlet `POSTv vsub. &(vsub = EL n vs)* ARRAY av vs`
>-(xapp \\ fs[NUM_def, INT_def] \\ imp_res_tac LIST_REL_LENGTH \\ fs[])
\\ xlet `POSTv res. & (A (f (EL n a)) res) * ARRAY av vs`
>-(xapp \\ xsimpl \\ instantiate \\ qexists_tac `(EL n a)` \\ fs[LIST_REL_EL_EQN])
\\ xlet `POSTv u. ARRAY av (LUPDATE res n vs)`
>-(xapp \\ xsimpl \\ instantiate \\ imp_res_tac LIST_REL_LENGTH \\ fs[NUM_def, INT_def] \\ rfs[])
\\ xlet `POSTv n1. & NUM (n + 1) n1 * ARRAY av (LUPDATE res n vs)`
>-(xapp \\ xsimpl \\ qexists_tac `&n` \\ fs[NUM_def, INT_def, integerTheory.INT_ADD])
\\ first_x_assum (qspecl_then [`LUPDATE (f (EL n a)) n a`, `n + 1`] mp_tac) \\ rw[]
\\ xapp \\ xsimpl \\ instantiate \\ fs[NUM_def, INT_def] \\ rw[EVERY2_LUPDATE_same]
\\ qexists_tac `TAKE n x`
\\ simp[RIGHT_EXISTS_AND_THM]
\\ conj_tac
>-(`(TAKE n (TAKE (n + 1) (LUPDATE (f (EL n a)) n a))) = (TAKE n a)` by fs[lupdate_breakdown_thm, TAKE_APPEND1, TAKE_TAKE]
\\ metis_tac[list_rel_take_thm])
\\ first_x_assum(qspec_then`ARB`kall_tac)
\\ qexists_tac`[EL n x] ++ x'`
\\ reverse conj_tac
>- (
imp_res_tac LIST_REL_LENGTH
\\ rfs[LENGTH_LUPDATE,LENGTH_TAKE]
\\ fs[LIST_EQ_REWRITE]
\\ qx_gen_tac`z`
\\ Cases_on`z<n` \\ simp[EL_APPEND1,EL_APPEND2,EL_TAKE]
\\ rw[] \\ `z = n` by decide_tac \\ simp[] )
\\ rfs[LIST_REL_EL_EQN,EL_MAP,EL_DROP,EL_LUPDATE,EL_TAKE]
\\ Cases \\ fs[]
>- ( rpt(first_x_assum(qspec_then`n`mp_tac) \\ simp[]) )
\\ qmatch_goalsub_rename_tac`A _ (EL z l2)`
\\ strip_tac
\\ first_x_assum(qspec_then`z`mp_tac)
\\ simp[]
\\ fs[ADD1]
\\ qpat_x_assum`_ = LENGTH x`(SUBST_ALL_TAC o SYM)
\\ fs[]
QED
Theorem array_modify_spec:
!f fv a vs av A A'.
(A --> A) f fv /\ LIST_REL A a vs
==> app (p:'ffi ffi_proj) ^(fetch_v "Array.modify" array_st) [fv; av]
(ARRAY av vs) (POSTv uv. SEP_EXISTS vs1. ARRAY av vs1 * cond(EVERY2 A (MAP f a) vs1))
Proof
rpt strip_tac
\\ xcf "Array.modify" array_st
\\ xlet `POSTv len. & NUM (LENGTH a) len * ARRAY av vs`
>-(xapp \\ xsimpl \\ imp_res_tac LIST_REL_LENGTH \\ fs[INT_def, NUM_def])
\\ xapp \\ xsimpl \\ instantiate
QED
Theorem array_modifyi_aux_spec:
!a n f fv vs av max maxv nv A.
NUM max maxv /\ max = LENGTH a /\ NUM n nv /\ (NUM --> A --> A) f fv /\ n <= max /\
LIST_REL A a vs
==> app (p:'ffi ffi_proj) Array_modifyi_aux_v [fv; av; maxv; nv]
(ARRAY av vs) (POSTv uv. SEP_EXISTS vs1 vs2. ARRAY av (vs1 ++ vs2) * cond(EVERY2 A (TAKE n a) vs1) *
cond(EVERY2 A (MAPi (\i. f (n + i)) (DROP n a)) vs2))
Proof
gen_tac \\ gen_tac \\ Induct_on `LENGTH a - n` \\ rpt strip_tac
>-(xcf_with_def Array_modifyi_aux_v_def
\\ xlet `POSTv bool. & BOOL (nv=maxv) bool * ARRAY av vs`
>-(xapp_spec eq_num_v_thm \\ xsimpl \\ instantiate \\ fs[INT_def, NUM_def, BOOL_def])
\\ xif
>-(xcon \\ xsimpl \\ fs[NUM_def, INT_def] \\ rw[DROP_LENGTH_NIL])
\\ `LENGTH a = n` by DECIDE_TAC \\ fs[NUM_def, INT_def] \\ rfs[])
\\ xcf_with_def Array_modifyi_aux_v_def
\\ xlet `POSTv bool. & BOOL (nv=maxv) bool * ARRAY av vs`
>-(xapp_spec eq_num_v_thm \\ xsimpl \\ instantiate \\ fs[INT_def, NUM_def, BOOL_def])
\\ xif
>-(xcon \\ xsimpl \\ qexists_tac `vs` \\ fs[NUM_def, INT_def] \\ rw[DROP_LENGTH_NIL])
\\ xlet `POSTv val. &(val = EL n vs) * ARRAY av vs`
>-(xapp \\ fs[NUM_def, INT_def] \\ imp_res_tac LIST_REL_LENGTH \\ fs[])
\\ xlet `POSTv res. & A (f n (EL n a)) res * ARRAY av vs`
>-(xapp \\ xsimpl \\ instantiate \\ qexists_tac `EL n a` \\ fs[LIST_REL_EL_EQN])
\\ xlet `POSTv u. ARRAY av (LUPDATE res n vs)`
>-(xapp \\ xsimpl \\ imp_res_tac LIST_REL_LENGTH \\ fs[NUM_def, INT_def] \\ rfs[])
\\ xlet `POSTv n1. & NUM (n + 1) n1 * ARRAY av (LUPDATE res n vs)`
>-(xapp \\ xsimpl \\ qexists_tac `&n` \\ fs[NUM_def, integerTheory.INT_ADD])
\\ first_x_assum(qspecl_then [`LUPDATE (f n (EL n a)) n a`, `n + 1`] mp_tac) \\ rw[]
\\ xapp \\ xsimpl \\ instantiate \\ fs[NUM_def, INT_def] \\ rw[EVERY2_LUPDATE_same]
\\ qexists_tac `TAKE n x`
\\ simp[RIGHT_EXISTS_AND_THM]
\\ conj_tac
>-(`(TAKE n (TAKE (n + 1) (LUPDATE (f n (EL n a)) n a))) = (TAKE n a)` by fs[lupdate_breakdown_thm, TAKE_APPEND1, TAKE_TAKE]
\\ metis_tac[list_rel_take_thm])
\\ first_x_assum(qspec_then`ARB`kall_tac)
\\ qexists_tac `[EL n x] ++ x'`
\\ reverse conj_tac
>-(
imp_res_tac LIST_REL_LENGTH
\\ rfs[LENGTH_LUPDATE, LENGTH_TAKE]
\\ fs [LIST_EQ_REWRITE]
\\ qx_gen_tac`z`
\\ Cases_on`z<n` \\ simp[EL_APPEND1, EL_APPEND2, EL_TAKE]
\\ rw[] \\ `z = n` by DECIDE_TAC \\ simp[])
\\ rfs[LIST_REL_EL_EQN, EL_MAP, EL_DROP, EL_LUPDATE, EL_TAKE]
\\ Cases \\ fs[]
>- ( rpt(first_x_assum(qspec_then`n`mp_tac) \\ simp[]))
\\ qmatch_goalsub_rename_tac`A _ (EL z l2)`
\\ strip_tac
\\ first_x_assum(qspec_then`z`mp_tac)
\\ simp[] \\ fs[ADD1] \\ qpat_x_assum`_ = LENGTH x`(SUBST_ALL_TAC o SYM)
\\ fs[]
QED
Theorem array_modifyi_spec:
!f fv a vs av A A'.
(NUM --> A --> A) f fv /\ LIST_REL A a vs
==> app (p:'ffi ffi_proj) ^(fetch_v "Array.modifyi" array_st) [fv; av]
(ARRAY av vs) (POSTv uv. SEP_EXISTS vs1. ARRAY av vs1 * cond(EVERY2 A (MAPi f a) vs1))
Proof
rpt strip_tac
\\ xcf "Array.modifyi" array_st
\\ xlet `POSTv len. & NUM (LENGTH a) len * ARRAY av vs`
>-(xapp \\ xsimpl \\ imp_res_tac LIST_REL_LENGTH \\ fs[INT_def, NUM_def])
\\ xapp \\ xsimpl \\ metis_tac [BETA_THM]
QED
(*
Theorem array_foldli_aux_spec:
!a n f fv init initv vs av max maxv nv (A:'a->v->bool) (B:'b->v->bool).
(NUM-->B-->A-->A) f fv /\ LIST_REL B a vs /\ A init initv /\ NUM max maxv /\ NUM n nv
/\ max = LENGTH a /\ n <= max
==> app (p:'ffi ffi_proj) Array_foldli_aux_v [fv; initv; av; maxv; nv]
(ARRAY av vs) (POSTv val. & A (mllist$foldli (\i. f (i + n)) init (DROP n a)) val * ARRAY av vs)
Proof
gen_tac \\ gen_tac \\ Induct_on `LENGTH a - n`
>-(xcf_with_def "foldli_aux" Array_foldli_aux_v_def
\\ xlet `POSTv bool. & BOOL (nv = maxv) bool * ARRAY av vs`
>-(xapp \\ xsimpl \\ instantiate\\ fs[BOOL_def, INT_def, NUM_def])
\\ xif
>-(xvar \\ xsimpl \\ fs[NUM_def, INT_def, DROP_LENGTH_NIL, mllistTheory.foldli_def, mllistTheory.foldli_aux_def])
\\ fs[NUM_def, INT_def, BOOL_def] \\ rfs[])
\\ xcf_with_def "foldli_aux" Array_foldli_aux_v_def
\\ xlet `POSTv bool. & BOOL (nv = maxv) bool * ARRAY av vs`
>-(xapp \\ xsimpl \\ instantiate\\ fs[BOOL_def, INT_def, NUM_def])
\\ xif
>-(xvar \\ xsimpl \\ fs[NUM_def, INT_def, DROP_LENGTH_NIL, mllistTheory.foldli_def, mllistTheory.foldli_aux_def])
\\ xlet `POSTv n1. & NUM (n + 1) n1 * ARRAY av vs`
>-(xapp \\ xsimpl \\ qexists_tac `&n` \\ fs[NUM_def, integerTheory.INT_ADD])
\\ xlet `POSTv val. & (val = EL n vs) * ARRAY av vs`
>-(xapp \\ xsimpl \\ imp_res_tac LIST_REL_LENGTH \\ fs[NUM_def, INT_def] \\ rfs[])
\\ xlet `POSTv res. & A (f n (EL n a) init) res * ARRAY av vs`
>-(xapp \\ xsimpl \\ instantiate \\ qexists_tac `EL n a` \\ fs[LIST_REL_EL_EQN])
\\ first_x_assum(qspecl_then [`a`, `n + 1`] mp_tac) \\ rw[]
\\ xapp \\ xsimpl \\ instantiate \\ rw[mllistTheory.foldli_def, mllistTheory.foldli_aux_def, DROP_EL_CONS]
\\ ... (*How to deal with foldli_aux as it has nothing proved about it *)
QED
Theorem array_foldli_spec:
!f fv init initv a vs av (A:'a->v->bool) (B:'b->v->bool).
(NUM-->B-->A-->A) f fv /\ LIST_REL B a vs /\ A init initv
==> app (p:'ffi ffi_proj) ^(fetch_v "foldli" foldli_st) [fv; initv; av]
(ARRAY av vs) (POSTv val. &A (mllist$foldli f init a) val * ARRAY av vs)
Proof
xcf "foldli" foldli_st
\\ xlet `POSTv len. & NUM (LENGTH a) len * ARRAY av vs`
>-(xapp \\ xsimpl \\ imp_res_tac LIST_REL_LENGTH \\ fs[])
\\ xapp \\ xsimpl \\ instantiate \\ srw_tac[ETA_ss][]
QED
Theorem array_foldl_aux_spec:
!f fv init initv a vs av max maxv n nv (A:'a->v->bool) (B:'b->v->bool).
(B-->A-->A) f fv /\ LIST_REL B a vs /\ A init initv /\ NUM max maxv /\ NUM n nv
/\ max = LENGTH a /\ n <= max
==> app (p:'ffi ffi_proj) Array_foldl_aux_v [fv; initv; av; maxv; nv]
(ARRAY av vs) (POSTv val. & A (FOLDL (\i. f (i + n)) init (DROP n a)) val * ARRAY av vs)
Proof
xcf_with_def "foldl_aux" Array_foldl_aux_v_def
\\ xlet `POSTv bool. & BOOL (nv = maxv) bool * ARRAY av vs`
>-(xapp \\ xsimpl \\ instantiate\\ fs[BOOL_def, INT_def, NUM_def])
\\ xif
>-(xvar \\ xsimpl \\ fs[NUM_def, INT_def, DROP_LENGTH_NIL, FOLDL])
\\ xlet `POSTv n1. & NUM (n + 1) n1 * ARRAY av vs`
>-(xapp \\ xsimpl \\ qexists_tac `&n` \\ fs[NUM_def, integerTheory.INT_ADD])
\\ xlet `POSTv res. & A (f init b) res * ARRAY av vs`
>-(... (*xapp*))
\\ xlet `POSTv val. & (val = EL n vs) * ARRAY av vs`
>-(xapp \\ xsimpl \\ imp_res_tac LIST_REL_LENGTH \\ fs[NUM_def, INT_def] \\ rfs[])
\\ Induct_on `LENGTH a - n`
>-(rw[] \\ imp_res_tac LIST_REL_LENGTH \\ fs[NUM_def, INT_def] \\ rfs[])
\\ rw[] \\ ... (*xapp*)
QED
Theorem array_foldl_spec:
!f fv init initv a vs av (A:'a->v->bool) (B:'b->v->bool).
(B-->A-->A) f fv /\ LIST_REL B a vs /\ A init initv
==> app (p:'ffi ffi_proj) ^(fetch_v "foldl" foldl_st) [fv; initv; av]
(ARRAY av vs) (POSTv val. &A (FOLDL f init a) val * ARRAY av vs)
Proof
xcf "foldl" foldl_st
\\ xlet `POSTv len. & NUM (LENGTH a) len * ARRAY av vs`
>-(xapp \\ xsimpl \\ imp_res_tac LIST_REL_LENGTH \\ fs[])
\\ xapp \\ xsimpl \\ instantiate
QED
Theorem array_foldri_aux_spec:
!n f fv init initv a vs av nv (A:'a->v->bool) (B:'b->v->bool).
(NUM-->B-->A-->A) f fv /\ LIST_REL B a vs /\ A init initv /\
NUM n nv /\ n <= LENGTH a
==> app (p:'ffi ffi_proj) Array_foldri_aux_v [fv; initv; av; nv]
(ARRAY av vs) (POSTv val. & A (FOLDRi f init (TAKE n a)) val * ARRAY av vs)
Proof
gen_tac \\ Induct_on `n`
>-(xcf_with_def "foldri_aux" Array_foldri_aux_v_def
\\ xlet `POSTv bool. SEP_EXISTS ov. & BOOL (nv = ov) bool * ARRAY av vs * & NUM 0 ov`
>-(xapp \\ xsimpl \\ instantiate \\ fs[NUM_def, INT_def])
\\ xif
>-(xvar \\ xsimpl)
\\ fs[NUM_def, INT_def] \\ rfs[])
\\ xcf_with_def "foldri_aux" Array_foldri_aux_v_def
\\ xlet `POSTv bool. SEP_EXISTS ov. & BOOL (nv = ov) bool * ARRAY av vs * & NUM 0 ov`
>-(xapp \\ xsimpl \\ instantiate \\ fs[NUM_def, INT_def])
\\ xif
>-(fs[NUM_def, INT_def, numTheory.NOT_SUC])
\\ xlet `POSTv n1. & NUM (SUC n - 1) n1 * ARRAY av vs`
>-(xapp \\ xsimpl \\ qexists_tac `&(SUC n)` \\ fs[NUM_def, INT_def, ADD1, integerTheory.INT_SUB])
\\ xlet `POSTv n2. & NUM (SUC n - 1) n2 * ARRAY av vs`
>-(xapp \\ xsimpl \\ qexists_tac `&(SUC n)` \\ fs[NUM_def, INT_def, ADD1, integerTheory.INT_SUB])
\\ xlet `POSTv val. &(val = EL n vs) * ARRAY av vs`
>-(xapp \\ imp_res_tac LIST_REL_LENGTH \\ fs[NUM_def, INT_def])
\\ xlet `POSTv n3. & NUM (SUC n - 1) n3 * ARRAY av vs`
>-(xapp \\ xsimpl \\ qexists_tac `&(SUC n)` \\ fs[NUM_def, INT_def, ADD1, integerTheory.INT_SUB])
\\ xlet `POSTv res. & (A (f n (EL n a) init) res) * ARRAY av vs`
>-(xapp \\ xsimpl \\ instantiate \\ qexists_tac`EL n a` \\ fs[LIST_REL_EL_EQN])
\\ xapp \\ xsimpl \\ instantiate \\ fs[TAKE_EL_SNOC, ADD1] (*need something similar to FOLDR SNOC*)
\\ ...
QED
Theorem array_foldri_spec:
!f fv init initv a av vs (A:'a->v->bool) (B:'b->v->bool).
(NUM-->B-->A-->A) f fv /\ LIST_REL B a vs /\ A init initv
==> app (p:'ffi ffi_proj) ^(fetch_v "foldri" foldri_st) [fv; initv; av]
(ARRAY av vs) (POSTv val. & A (FOLDRi f init a) val * ARRAY av vs)
Proof
xcf "foldri" foldri_st
\\ xlet `POSTv len. & NUM (LENGTH vs) len * ARRAY av vs`
>-(xapp \\ xsimpl)
\\ xapp \\ xsimpl \\ instantiate \\ imp_res_tac LIST_REL_LENGTH
\\ fs[] \\ metis_tac[TAKE_LENGTH_ID]
QED
*)
Theorem array_foldr_aux_spec:
!n f fv init initv a vs av nv (A:'a->v->bool) (B:'b->v->bool).
(B-->A-->A) f fv /\ LIST_REL B a vs /\ A init initv /\
NUM n nv /\ n <= LENGTH a
==> app (p:'ffi ffi_proj) Array_foldr_aux_v [fv; initv; av; nv]
(ARRAY av vs) (POSTv val. & A (FOLDR f init (TAKE n a)) val * ARRAY av vs)
Proof
gen_tac \\ Induct_on `n` \\ rpt strip_tac
>-(xcf_with_def Array_foldr_aux_v_def
\\ xlet `POSTv bool. SEP_EXISTS ov. & BOOL (nv = ov) bool * ARRAY av vs * & NUM 0 ov`
>-(xapp_spec eq_num_v_thm \\ xsimpl \\ instantiate \\ fs[NUM_def, INT_def])
\\ xif
>-(xvar \\ xsimpl)
\\ fs[NUM_def, INT_def] \\ rfs[])
\\ xcf_with_def Array_foldr_aux_v_def
\\ xlet `POSTv bool. SEP_EXISTS ov. & BOOL (nv = ov) bool * ARRAY av vs * & NUM 0 ov`
>-(xapp_spec eq_num_v_thm \\ xsimpl \\ instantiate \\ fs[NUM_def, INT_def])
\\ xif
>-(fs[NUM_def, INT_def, numTheory.NOT_SUC])
\\ xlet `POSTv n1. & NUM (SUC n - 1) n1 * ARRAY av vs`
>-(xapp \\ xsimpl \\ qexists_tac `&(SUC n)` \\ fs[NUM_def, INT_def, ADD1, integerTheory.INT_SUB])
\\ xlet `POSTv n2. & NUM (SUC n - 1) n2 * ARRAY av vs`
>-(xapp \\ xsimpl \\ qexists_tac `&(SUC n)` \\ fs[NUM_def, INT_def, ADD1, integerTheory.INT_SUB])
\\ xlet `POSTv val. &(val = EL n vs) * ARRAY av vs`
>-(xapp \\ imp_res_tac LIST_REL_LENGTH \\ fs[NUM_def, INT_def])
\\ xlet `POSTv res. & (A (f (EL n a) init) res) * ARRAY av vs`
>-(xapp \\ xsimpl \\ instantiate \\ qexists_tac`EL n a` \\ fs[LIST_REL_EL_EQN])
\\ xapp \\ xsimpl \\ instantiate \\ fs[TAKE_EL_SNOC, ADD1, FOLDR_SNOC]
QED
Theorem array_foldr_spec:
!f fv init initv a av vs (A:'a->v->bool) (B:'b->v->bool).
(B-->A-->A) f fv /\ LIST_REL B a vs /\ A init initv
==> app (p:'ffi ffi_proj) ^(fetch_v "Array.foldr" array_st) [fv; initv; av]
(ARRAY av vs) (POSTv val. & A (FOLDR f init a) val * ARRAY av vs)
Proof
rpt strip_tac
\\ xcf "Array.foldr" array_st
\\ xlet `POSTv len. & NUM (LENGTH vs) len * ARRAY av vs`
>-(xapp \\ xsimpl)
\\ xapp \\ xsimpl \\ instantiate \\ imp_res_tac LIST_REL_LENGTH
\\ fs[] \\metis_tac[TAKE_LENGTH_ID]
QED
Triviality IMP_app:
f = Closure v1 env (Fun v2 x) ∧
app p (Closure (v1 with v := nsBind env x1 v1.v) v2 x) (x2::xs) H Q ⇒
app p f (x1::x2::xs) H Q
Proof
simp [app_def]
\\ rw [app_basic_def]
\\ fs [semanticPrimitivesTheory.do_opapp_def,cfDivTheory.POSTv_eq,PULL_EXISTS]
\\ ‘SPLIT3 (st2heap p st) (h_i,h_k,{})’ by fs [SPLIT_def,SPLIT3_def]
\\ first_x_assum $ irule_at Any
\\ rw [evaluate_to_heap_def,evaluate_ck_def,evaluateTheory.evaluate_def,PULL_EXISTS]
\\ fs [cfStoreTheory.st2heap_def,SEP_EXISTS_THM,cond_STAR]
\\ first_x_assum $ irule_at Any \\ fs []
QED
val eval_nsLookup_tac =
rewrite_tac [ml_progTheory.nsLookup_merge_env]
\\ CONV_TAC(DEPTH_CONV ml_progLib.nsLookup_conv)
Theorem array_lookup_spec:
NUM n nv ⇒
app (p : 'ffi ffi_proj)
Array_lookup_v
[arrv; defaultv; nv]
(ARRAY arrv arrlsv)
(POSTv v.
ARRAY arrv arrlsv *
&(v = any_el n arrlsv defaultv))
Proof
(* this can unfortunately not be proved using CF since CF rules for
Asub don't allow reasoning about out of bounds indexing *)
rw [] \\ rpt (irule_at Any IMP_app) \\ fs []
\\ fs [app_def,app_basic_def,cfDivTheory.POSTv_eq,PULL_EXISTS,SEP_EXISTS_THM]
\\ fs [Array_lookup_v_def]
\\ rw [semanticPrimitivesTheory.do_opapp_def,cond_STAR]
\\ first_assum $ irule_at Any \\ fs []
\\ ‘SPLIT3 (st2heap p st) (h_i,h_k,{})’ by fs [SPLIT_def,SPLIT3_def]
\\ first_assum $ irule_at Any \\ fs []
\\ rw [evaluate_to_heap_def,evaluate_ck_def]
\\ qexists_tac ‘100’
\\ fs [evaluateTheory.evaluate_def]
\\ eval_nsLookup_tac \\ fs [evaluateTheory.dec_clock_def]
\\ rw [semanticPrimitivesTheory.do_opapp_def,Array_sub_v_def]
\\ fs [evaluateTheory.evaluate_def]
\\ rw [semanticPrimitivesTheory.do_app_def]
\\ gvs [ARRAY_def,SEP_EXISTS_THM,cond_STAR,NUM_def,INT_def]
\\ gvs [cell_def,one_def,EVAL “pat_bindings Pany []”]
\\ ‘store_lookup loc st.refs = SOME (Varray arrlsv)’ by
(fs [semanticPrimitivesTheory.store_lookup_def]
\\ ‘Mem loc (Varray arrlsv) IN st2heap p st’ by
(fs [SPLIT_def,EXTENSION] \\ metis_tac [])
\\ fs [cfStoreTheory.st2heap_def]
\\ imp_res_tac cfStoreTheory.store2heap_IN_LENGTH \\ fs []
\\ imp_res_tac cfStoreTheory.store2heap_IN_EL \\ fs []
\\ fs [cfStoreTheory.Mem_NOT_IN_ffi2heap])
\\ fs [GREATER_EQ]
\\ Cases_on ‘n < LENGTH arrlsv’ \\ fs [any_el_ALT]
>- fs [cfStoreTheory.st2heap_def]
\\ fs [semanticPrimitivesTheory.can_pmatch_all_def]
\\ fs [semanticPrimitivesTheory.pmatch_def]
\\ eval_nsLookup_tac \\ fs [evaluateTheory.dec_clock_def]
\\ fs [EVAL “nsLookup_Short nsEmpty n”]
\\ eval_nsLookup_tac \\ fs [evaluateTheory.dec_clock_def]
\\ fs [cfStoreTheory.st2heap_def]
QED
Theorem array_update_any_spec[local]:
!a av i iv v.
INT i iv ==>
app (p:'ffi ffi_proj) Array_update_v
[av; iv; v]
(ARRAY av a)
(POSTve (λuv. cond (UNIT_TYPE () uv ∧ 0i ≤ i ∧ Num i < LENGTH a) *
ARRAY av (LUPDATE v (Num i) a))
(λev. cond (ev = sub_exn_v ∧ (0i ≤ i ⇒ LENGTH a ≤ Num i)) * ARRAY av a))
Proof
rw []
\\ Cases_on ‘0 ≤ i ⇒ LENGTH a ≤ Num i’ \\ fs []
(* this can unfortunately not be proved using CF since CF rules for
arrays don't allow reasoning about out of bounds indexing *)
>-
(rw [] \\ rpt (irule_at Any IMP_app) \\ fs []
\\ fs [app_def,app_basic_def,PULL_EXISTS,SEP_EXISTS_THM]
\\ rw [semanticPrimitivesTheory.do_opapp_def,cond_STAR,update_resize_def]
\\ fs [Array_update_v_def] \\ rw []
\\ qexists_tac ‘Exn sub_exn_v’
\\ ‘SPLIT3 (st2heap p st) (h_i,h_k,{})’ by fs [SPLIT_def,SPLIT3_def]
\\ first_assum $ irule_at Any \\ fs []
\\ rw [evaluate_to_heap_def,evaluate_ck_def,SEP_CLAUSES]
\\ fs [evaluateTheory.evaluate_def,semanticPrimitivesTheory.do_app_def]
\\ gvs [ARRAY_def,SEP_CLAUSES,cond_STAR,SEP_EXISTS_THM,cell_def,one_def]
\\ ‘store_lookup loc st.refs = SOME (Varray a)’ by
(fs [semanticPrimitivesTheory.store_lookup_def]
\\ ‘Mem loc (Varray a) IN st2heap p st’ by
(fs [SPLIT_def,EXTENSION] \\ metis_tac [])
\\ fs [cfStoreTheory.st2heap_def]
\\ imp_res_tac cfStoreTheory.store2heap_IN_LENGTH \\ fs []
\\ imp_res_tac cfStoreTheory.store2heap_IN_EL \\ fs []
\\ fs [cfStoreTheory.Mem_NOT_IN_ffi2heap])
\\ gvs [INT_def,AllCaseEqs(),PULL_EXISTS]
\\ qexists_tac ‘0’ \\ qexists_tac ‘st.refs’ \\ fs []
\\ qexists_tac ‘st.ffi’ \\ fs [cfStoreTheory.st2heap_def]
\\ Cases_on ‘i’ \\ fs [])
\\ imp_res_tac integerTheory.NUM_POSINT_EXISTS \\ gvs []
\\ fs [GSYM NUM_def, GSYM NOT_LESS]
\\ fs [SEP_CLAUSES]
\\ rename [‘NUM n nv’]
\\ mp_tac (array_update_spec |> SPEC_ALL)
\\ fs []
\\ match_mp_tac (METIS_PROVE [] “x = y ⇒ (f x ⇒ f y)”)
\\ fs [FUN_EQ_THM]
\\ Cases \\ fs [cond_def,SEP_F_def]
QED
Theorem array_updateResize_spec:
NUM n nv ⇒
app (p : 'ffi ffi_proj)
Array_updateResize_v
[arrv; defaultv; nv; xv]
(ARRAY arrv arrlsv)
(POSTv v. ARRAY v (update_resize arrlsv defaultv xv n))
Proof
rw []
\\ xcf_with_def Array_updateResize_v_def
\\ Cases_on ‘n < LENGTH arrlsv’
>-
(xhandle ‘(POSTv v. ARRAY v (update_resize arrlsv defaultv xv n))’
\\ xsimpl
\\ xlet ‘(POSTv v. ARRAY arrv (LUPDATE xv n arrlsv))’
>-
(xapp_spec array_update_spec
\\ rpt (first_x_assum $ irule_at Any)
\\ xsimpl)
>- (xvar \\ xsimpl \\ fs [update_resize_def]))
\\ xhandle ‘(POSTe ev. cond (ev = sub_exn_v) * ARRAY arrv arrlsv)’
>-
(xlet ‘(POSTe ev. cond (ev = sub_exn_v) * ARRAY arrv arrlsv)’
\\ xsimpl
\\ xapp_spec array_update_any_spec
\\ gvs [NUM_def]
\\ first_x_assum $ irule_at Any
\\ xsimpl)
\\ xcases
\\ xlet_auto >- xsimpl
\\ xlet_auto >- xsimpl
\\ xlet ‘POSTv av. ARRAY av (REPLICATE (2*n+1) defaultv) * ARRAY arrv arrlsv’
>-
(xapp_spec array_alloc_spec
\\ first_x_assum $ irule_at Any
\\ xsimpl)
\\ fs [update_resize_def]
\\ qabbrev_tac ‘k = (2 * n + 1 − LENGTH arrlsv)’
\\ ‘∃ts. REPLICATE (2 * n + 1) defaultv = ts ++ REPLICATE k defaultv ∧
LENGTH ts = LENGTH arrlsv’ by
(qexists_tac ‘REPLICATE (LENGTH arrlsv) defaultv’
\\ fs [rich_listTheory.REPLICATE_APPEND,Abbr‘k’])
\\ fs []
\\ xlet ‘POSTv v. ARRAY av (arrlsv ++ REPLICATE k defaultv)’
>- (xapp_spec array_copy_spec \\ fs [PULL_EXISTS] \\ xsimpl)
\\ xlet ‘(POSTv v. ARRAY av (LUPDATE xv n (arrlsv ++ REPLICATE k defaultv)))’
>-
(xapp_spec array_update_spec
\\ first_x_assum $ irule_at Any
\\ xsimpl \\ unabbrev_all_tac \\ fs [])
\\ xvar \\ fs [] \\ xsimpl
QED
val _ = export_theory();