-
Notifications
You must be signed in to change notification settings - Fork 85
/
RatProgScript.sml
1017 lines (899 loc) · 33.7 KB
/
RatProgScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Module for computing over the rational numbers.
*)
open preamble ml_translatorLib ml_translatorTheory ml_progLib
mlvectorTheory IntProgTheory basisFunctionsLib
ratLib gcdTheory ratTheory mlratTheory
local open PrettyPrinterProgTheory in end
val _ = new_theory"RatProg"
val _ = translation_extends "PrettyPrinterProg";
val _ = ml_prog_update open_local_block;
val _ = (use_full_type_names := false);
val _ = register_type ``:mlrat$rational``;
val _ = (use_full_type_names := true);
Definition div_gcd_def:
div_gcd a b =
let d = gcd (num_of_int a) b in
if d = 0 \/ d = 1 then RatPair a b else RatPair (a / &d) (b DIV d)
End
val res = translate div_gcd_def;
val _ = ml_prog_update open_local_in_block;
val _ = ml_prog_update (open_module "Rat");
(* provides the Map.map name for the map type *)
val _ = ml_prog_update (add_dec
``Dtabbrev unknown_loc [] "rat" (Atapp [] (Short "rational"))`` I);
(* refinement invariants *)
Definition RAT_TYPE_def:
RAT_TYPE (r:rat) =
\v. ?(n:int) (d:num). (r = (rat_of_int n) / &d) /\
gcd (Num (ABS n)) d = 1 /\ d <> 0 /\
RATIONAL_TYPE (RatPair n d) v
End
val _ = add_type_inv ``RAT_TYPE`` ``:rational``;
Definition REAL_TYPE_def:
REAL_TYPE (r:real) =
\v. ?x:rat. RAT_TYPE x v /\ (real_of_rat x = r)
End
val _ = add_type_inv ``REAL_TYPE`` ``:rational``;
(* transfer *)
Triviality RAT_RAT:
(!r1. real_of_rat (f1 r1) = f2 (real_of_rat r1)) ==>
!v. (RAT_TYPE --> RAT_TYPE) f1 v ==>
(REAL_TYPE --> REAL_TYPE) f2 v
Proof
strip_tac
\\ SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,REAL_TYPE_def,PULL_EXISTS,
FORALL_PROD] \\ rw []
\\ rename [‘empty_state with refs := R’]
\\ first_x_assum (first_assum o
mp_then.mp_then (mp_then.Pos hd)
(qspec_then ‘R’ strip_assume_tac))
\\ fs [] \\ asm_exists_tac \\ fs []
\\ fs [] \\ asm_exists_tac \\ fs []
QED
Triviality RAT_RAT_RAT:
(!r1 r2. real_of_rat (f1 r1 r2) = f2 (real_of_rat r1) (real_of_rat r2)) ==>
!v. (RAT_TYPE --> RAT_TYPE --> RAT_TYPE) f1 v ==>
(REAL_TYPE --> REAL_TYPE --> REAL_TYPE) f2 v
Proof
strip_tac
\\ SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,REAL_TYPE_def,PULL_EXISTS,
FORALL_PROD] \\ rw []
\\ rename [‘empty_state with refs := R’]
\\ first_x_assum (first_assum o
mp_then.mp_then (mp_then.Pos hd)
(qspec_then ‘R’ strip_assume_tac))
\\ fs [] \\ asm_exists_tac \\ fs []
\\ rw [] \\ first_x_assum drule
\\ qmatch_goalsub_rename_tac `(empty_state with refs := refs2)`
\\ disch_then (qspec_then `refs2` mp_tac)
\\ strip_tac \\ rpt (asm_exists_tac \\ fs [])
QED
Triviality RAT_RAT_BOOL:
(!r1 r2. f1 r1 r2 <=> f2 (real_of_rat r1) (real_of_rat r2)) ==>
!v. (RAT_TYPE --> RAT_TYPE --> BOOL) f1 v ==>
(REAL_TYPE --> REAL_TYPE --> BOOL) f2 v
Proof
strip_tac
\\ SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,REAL_TYPE_def,PULL_EXISTS,
FORALL_PROD] \\ rw []
\\ rename [‘empty_state with refs := R’]
\\ first_x_assum (first_assum o
mp_then.mp_then (mp_then.Pos hd)
(qspec_then ‘R’ strip_assume_tac))
\\ fs [] \\ asm_exists_tac \\ fs []
\\ rw [] \\ first_x_assum drule
\\ qmatch_goalsub_rename_tac `(empty_state with refs := refs2)`
\\ disch_then (qspec_then `refs2` mp_tac)
\\ strip_tac \\ rpt (asm_exists_tac \\ fs [])
QED
Triviality RAT_BOOL:
(!r1. (f1 r1) = f2 (real_of_rat r1)) ==>
!v. (RAT_TYPE --> BOOL) f1 v ==>
(REAL_TYPE --> BOOL) f2 v
Proof
strip_tac
\\ SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,REAL_TYPE_def,PULL_EXISTS,
FORALL_PROD] \\ rw []
QED
Triviality RAT_INT:
(!r1. (f1 r1) = f2 (real_of_rat r1)) ==>
!v. (RAT_TYPE --> INT) f1 v ==>
(REAL_TYPE --> INT) f2 v
Proof
strip_tac
\\ SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,REAL_TYPE_def,PULL_EXISTS,
FORALL_PROD] \\ rw []
QED
(* -- *)
val _ = next_ml_names := ["fromInt"];
val rational_of_int_v_thm = translate rational_of_int_def;
val Eval_RAT_INT = Q.prove(
`!v. (INT --> RATIONAL_TYPE) rational_of_int v ==>
(INT --> RAT_TYPE) rat_of_int v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,RAT_TYPE_def,PULL_EXISTS,
FORALL_PROD] \\ rw [] \\ res_tac >>
rename [‘empty_state with refs := R’] >>
pop_assum (qspec_then ‘R’ strip_assume_tac) >>
fs [] >> asm_exists_tac >> fs [] >>
qexists_tac `x` >> qexists_tac `1` >>
fs [rational_of_int_def])
|> (fn th => MATCH_MP th rational_of_int_v_thm)
|> add_user_proved_v_thm;
val Eval_RAT_NUM = Q.prove(
`(NUM --> RAT_TYPE) rat_of_num rational_of_int_v`,
rw [] \\ assume_tac Eval_RAT_INT
\\ fs [NUM_def,Arrow_def,rat_of_int_def] \\ rw []
\\ pop_assum $ qspec_then ‘&x’ mp_tac \\ fs [])
|> add_user_proved_v_thm;
val Eval_REAL_INT = Q.prove(
`!v. (INT --> RAT_TYPE) rat_of_int v ==>
(INT --> REAL_TYPE) real_of_int v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,
REAL_TYPE_def,PULL_EXISTS,FORALL_PROD] \\ rw [] \\ res_tac
\\ rename [‘empty_state with refs := R’]
\\ pop_assum (qspec_then ‘R’ strip_assume_tac)
\\ fs [] \\ asm_exists_tac
\\ fs [] \\ asm_exists_tac
\\ fs [real_of_int_of_rat])
|> (fn th => MATCH_MP th Eval_RAT_INT)
|> add_user_proved_v_thm;
val Eval_REAL_NUM = Q.prove(
`(NUM --> REAL_TYPE) real_of_num rational_of_int_v`,
rw [] \\ assume_tac Eval_REAL_INT
\\ fs [NUM_def,Arrow_def,rat_of_int_def] \\ rw []
\\ pop_assum $ qspec_then ‘&x’ mp_tac \\ fs [])
|> add_user_proved_v_thm;
Definition pair_le_def:
pair_le (RatPair n1 d1) (RatPair n2 d2) = (n1 * & d2 <= n2 * (& d1):int)
End
val _ = next_ml_names := ["<="];
val pair_le_v_thm = translate pair_le_def;
val _ = augment_srw_ss [intLib.INT_ARITH_ss]
val Eval_RAT_LE = Q.prove(
`!v. (RATIONAL_TYPE --> RATIONAL_TYPE --> BOOL) pair_le v ==>
(RAT_TYPE --> RAT_TYPE --> BOOL) ($<=) v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,RAT_TYPE_def,PULL_EXISTS,
pair_le_def,FORALL_PROD] >> rw [] >>
rename [‘empty_state with refs := R’] >>
first_x_assum (first_assum o
mp_then.mp_then (mp_then.Pos hd)
(qspec_then ‘R’ strip_assume_tac)) >>
fs [] >> asm_exists_tac >> fs []
>> rw [] >> first_x_assum drule >> fs [pair_le_def]
>> qmatch_goalsub_rename_tac `(empty_state with refs := refs2)`
>> disch_then (qspec_then `refs2` mp_tac)
>> strip_tac >> rpt (asm_exists_tac >> fs []) >>
rename [‘BOOL (n1 * &d1 ≤ n2 * &d2) bv’] >>
`0q < &d1 ∧ 0q < &d2` by simp[] >>
simp[RAT_LDIV_LEQ_POS, RDIV_MUL_OUT, RAT_RDIV_LEQ_POS] >>
simp_tac bool_ss [GSYM rat_of_int_of_num, rat_of_int_MUL, rat_of_int_11,
rat_of_int_LE] >>
fs[integerTheory.INT_MUL_COMM])
|> (fn th => MATCH_MP th pair_le_v_thm)
|> add_user_proved_v_thm;
val Eval_REAL_LE = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE --> BOOL) ($<=) v ==>
(REAL_TYPE --> REAL_TYPE --> BOOL) ($<=) v`,
match_mp_tac RAT_RAT_BOOL \\ fs [real_of_rat_le])
|> (fn th => MATCH_MP th Eval_RAT_LE)
|> add_user_proved_v_thm;
val _ = next_ml_names := [">="];
val Eval_RAT_GE = translate rat_geq_def;
val Eval_REAL_GE = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE --> BOOL) ($>=) v ==>
(REAL_TYPE --> REAL_TYPE --> BOOL) ($>=) v`,
match_mp_tac RAT_RAT_BOOL
\\ fs [real_of_rat_le,rat_geq_def,realTheory.real_ge])
|> (fn th => MATCH_MP th Eval_RAT_GE)
|> add_user_proved_v_thm;
Definition pair_lt_def:
pair_lt (RatPair n1 d1) (RatPair n2 d2) = (n1 * & d2 < n2 * (& d1):int)
End
val _ = next_ml_names := ["<"];
val pair_lt_v_thm = translate pair_lt_def;
val Eval_RAT_LT = Q.prove(
`!v. (RATIONAL_TYPE --> RATIONAL_TYPE --> BOOL) pair_lt v ==>
(RAT_TYPE --> RAT_TYPE --> BOOL) ($<) v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,RAT_TYPE_def,PULL_EXISTS,
pair_lt_def,FORALL_PROD] \\ rw [] \\ res_tac
\\ pop_assum (strip_assume_tac o SPEC_ALL)
\\ fs [] \\ asm_exists_tac \\ fs []
\\ rw [] \\ first_x_assum drule \\ fs [pair_lt_def]
\\ qmatch_goalsub_rename_tac `(empty_state with refs := refs2)`
\\ disch_then (qspec_then `refs2` mp_tac)
\\ strip_tac \\ rpt (asm_exists_tac \\ fs [])
\\ pop_assum mp_tac
\\ ntac 2 (qpat_x_assum `~_` mp_tac)
\\ rpt (pop_assum kall_tac)
\\ fs [BOOL_def] \\ rw [] \\ rveq
\\ EQ_TAC \\ rw [] >>
rfs[RAT_LDIV_LES_POS, RDIV_MUL_OUT, RAT_RDIV_LES_POS] >>
full_simp_tac bool_ss [GSYM rat_of_int_of_num, rat_of_int_MUL, rat_of_int_11,
rat_of_int_LT] >>
fs[integerTheory.INT_MUL_COMM])
|> (fn th => MATCH_MP th pair_lt_v_thm)
|> add_user_proved_v_thm;
val Eval_REAL_LT = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE --> BOOL) ($<) v ==>
(REAL_TYPE --> REAL_TYPE --> BOOL) ($<) v`,
match_mp_tac RAT_RAT_BOOL \\ fs [real_of_rat_lt])
|> (fn th => MATCH_MP th Eval_RAT_LT)
|> add_user_proved_v_thm;
val _ = next_ml_names := [">"];
val Eval_RAT_GT = translate rat_gre_def;
val Eval_REAL_GT = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE --> BOOL) ($>) v ==>
(REAL_TYPE --> REAL_TYPE --> BOOL) ($>) v`,
match_mp_tac RAT_RAT_BOOL
\\ fs [real_of_rat_lt,rat_gre_def,realTheory.real_gt])
|> (fn th => MATCH_MP th Eval_RAT_GT)
|> add_user_proved_v_thm;
Definition pair_compare_def:
pair_compare (RatPair n1 d1) (RatPair n2 d2) =
let x1 = n1 * & d2 in
let x2 = n2 * & d1 in
if x1 < x2 then Less else
if x2 < x1 then Greater else Equal
End
Definition rat_compare_def:
rat_compare (r1:rat) r2 =
if r1 < r2 then Less else if r2 < r1 then Greater else Equal
End
val _ = next_ml_names := ["compare"];
val pair_compare_v_thm = translate pair_compare_def;
val Eval_RAT_COMPARE = Q.prove(
`!v. (RATIONAL_TYPE --> RATIONAL_TYPE --> ORDERING_TYPE) pair_compare v ==>
(RAT_TYPE --> RAT_TYPE --> ORDERING_TYPE) rat_compare v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,RAT_TYPE_def,PULL_EXISTS,
pair_compare_def,FORALL_PROD] \\ rw [] \\ res_tac
\\ pop_assum (strip_assume_tac o SPEC_ALL)
\\ fs [] \\ asm_exists_tac \\ fs []
\\ rw [] \\ first_x_assum drule \\ fs [pair_compare_def]
\\ qmatch_goalsub_rename_tac `(empty_state with refs := refs2)`
\\ disch_then (qspec_then `refs2` mp_tac)
\\ strip_tac \\ rpt (asm_exists_tac \\ fs [])
\\ pop_assum mp_tac
\\ ntac 2 (qpat_x_assum `~_` mp_tac)
\\ rpt (pop_assum kall_tac)
\\ fs [rat_compare_def]
\\ ntac 2 strip_tac
\\ match_mp_tac (METIS_PROVE [] ``(x1 = x2) ==> f x1 y ==> f x2 y``)
\\ rfs[RAT_LDIV_LES_POS, RDIV_MUL_OUT, RAT_RDIV_LES_POS]
\\ full_simp_tac bool_ss [GSYM rat_of_int_of_num, rat_of_int_MUL, rat_of_int_11,
rat_of_int_LT]
\\ fs[integerTheory.INT_MUL_COMM])
|> (fn th => MATCH_MP th pair_compare_v_thm)
|> add_user_proved_v_thm;
val _ = next_ml_names := ["min"];
val Eval_RAT_MIN = translate rat_min_def;
val Eval_REAL_MIN = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE --> RAT_TYPE) rat_min v ==>
(REAL_TYPE --> REAL_TYPE --> REAL_TYPE) realax$min v`,
match_mp_tac RAT_RAT_RAT
\\ fs [realTheory.min_def,rat_min_def,real_of_rat_le,ratTheory.rat_leq_def]
\\ rw [] \\ rfs [])
|> (fn th => MATCH_MP th Eval_RAT_MIN)
|> add_user_proved_v_thm;
val _ = next_ml_names := ["max"];
val Eval_RAT_MAX = translate rat_max_def;
val Eval_REAL_MAX = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE --> RAT_TYPE) rat_max v ==>
(REAL_TYPE --> REAL_TYPE --> REAL_TYPE) realax$max v`,
match_mp_tac RAT_RAT_RAT
\\ fs [realTheory.max_def,rat_max_def,real_of_rat_le,
ratTheory.rat_leq_def,rat_gre_def]
\\ rw [] \\ rfs [ratTheory.RAT_LES_ANTISYM]
\\ metis_tac [ratTheory.RAT_LES_TOTAL])
|> (fn th => MATCH_MP th Eval_RAT_MAX)
|> add_user_proved_v_thm;
val gcd_LESS_EQ = prove(
``!m n. n <> 0 ==> gcd$gcd m n <= n``,
recInduct gcd_ind \\ rw []
\\ once_rewrite_tac [gcdTheory.gcd_def]
\\ rw [] \\ fs []);
Theorem DIV_EQ_0:
0 < n ==> ((m DIV n = 0) <=> m < n)
Proof
strip_tac >> IMP_RES_THEN mp_tac DIVISION >>
rpt (disch_then (qspec_then `m` assume_tac)) >>
qabbrev_tac `q = m DIV n` >> qabbrev_tac `r = m MOD n` >>
RM_ALL_ABBREVS_TAC >> rw[] >> eq_tac >> simp[] >>
Cases_on ‘q’ >> simp[MULT_CLAUSES]
QED
Theorem DIV_GCD_NONZERO:
(0 < m ==> 0 < m DIV gcd m n) /\ (0 < n ==> 0 < n DIV gcd m n)
Proof
rw[] >> ‘gcd m n <> 0’ by simp[GCD_EQ_0]
>- (‘~(m < gcd m n)’
by metis_tac[dividesTheory.NOT_LT_DIVIDES,
GCD_IS_GREATEST_COMMON_DIVISOR] >>
spose_not_then assume_tac >>
rev_full_simp_tac bool_ss
[DIV_EQ_0, arithmeticTheory.NOT_LT_ZERO_EQ_ZERO,
arithmeticTheory.NOT_ZERO_LT_ZERO])
>- (‘~(n < gcd m n)’
by metis_tac[dividesTheory.NOT_LT_DIVIDES,
GCD_IS_GREATEST_COMMON_DIVISOR] >>
spose_not_then assume_tac >>
rev_full_simp_tac bool_ss
[DIV_EQ_0, arithmeticTheory.NOT_LT_ZERO_EQ_ZERO,
arithmeticTheory.NOT_ZERO_LT_ZERO])
QED
Triviality INT_NEG_DIV_FACTOR:
0 < (x:num) ==> (-&(x * y):int / &x = -&y)
Proof
strip_tac >> qspec_then ‘&x’ mp_tac integerTheory.INT_DIVISION >>
simp[] >> disch_then (qspec_then ‘-&(x * y)’ strip_assume_tac) >>
map_every qabbrev_tac [`D:int = -&(x * y)`, `q = D / &x`, `r = D % &x`] >>
Q.UNABBREV_TAC `D` >>
qpat_x_assum `_ = _` mp_tac >>
disch_then (mp_tac o Q.AP_TERM `int_add &(x:num * y)` ) >>
simp_tac bool_ss [integerTheory.INT_ADD_RINV] >>
qmatch_abbrev_tac `0i = RHS ==> q:int = -&y` >>
‘RHS = (q + &y) * &x + r’ by simp[Abbr‘RHS’] >>
Q.UNABBREV_TAC ‘RHS’ >> pop_assum SUBST_ALL_TAC >>
‘∃rn. r = &rn’ by (Cases_on ‘r’ >> simp[] >> fs[]) >>
pop_assum SUBST_ALL_TAC >> fs[] >>
Cases_on ‘q + &y’
>- (rename [‘q + &y = &n’] >> simp[integerTheory.INT_ADD])
>- (rename [‘q + &y = -&n’] >>
disch_then (mp_tac o Q.AP_TERM ‘int_add (&n * &x)’) >>
simp_tac bool_ss [integerTheory.INT_ADD_ASSOC,
integerTheory.INT_ADD_RID,
GSYM integerTheory.INT_NEG_LMUL,
integerTheory.INT_ADD_RINV] >> simp[] >>
Cases_on ‘n’ >> simp[MULT_CLAUSES] >> fs[])
>- (rename [‘q + &y = 0’] >> disch_then kall_tac >>
‘q + &y + -&y = -&y’ by metis_tac [integerTheory.INT_ADD_LID] >>
metis_tac[integerTheory.INT_ADD_ASSOC, integerTheory.INT_ADD_RID,
integerTheory.INT_ADD_RINV])
QED
val PAIR_TYPE_IMP_RAT_TYPE = prove(
``r = rat_of_int m / & n /\ n <> 0 ==>
RATIONAL_TYPE (div_gcd m n) v ==> RAT_TYPE r v``,
fs [RAT_TYPE_def,div_gcd_def] \\ rw [] >>
goal_assum (first_assum o mp_then (Pos last) mp_tac)
>- fs[num_of_int_def] >>
`gcd$gcd (num_of_int m) n <> 0` by fs [] >>
`0 < gcd$gcd (num_of_int m) n` by simp [] >>
Cases_on `m` \\ simp [ZERO_DIV, integerTheory.INT_DIV] >>
fs [DIV_EQ_X,NOT_LESS,gcd_LESS_EQ] >> rename1 `gcd$gcd m n <> 1` >>
‘0 < n DIV gcd m n ∧ 0 < m DIV gcd m n’ by simp[DIV_GCD_NONZERO] >>
simp[RAT_LDIV_EQ, RDIV_MUL_OUT, RAT_RDIV_EQ, integerTheory.INT_ABS_NUM]
>- (simp[RAT_MUL_NUM_CALCULATE] >>
qspecl_then [‘m’, ‘n’] mp_tac FACTOR_OUT_GCD >> simp[] >>
disch_then (qx_choosel_then [‘p’, ‘q’] strip_assume_tac) >>
qabbrev_tac ‘G = gcd$gcd m n’ >> simp[] >>
‘G * q DIV G = q ∧ G * p DIV G = p’ by metis_tac [MULT_COMM, MULT_DIV] >>
simp[]) >>
qspecl_then [‘m’, ‘n’] mp_tac FACTOR_OUT_GCD >> simp[] >>
disch_then (qx_choosel_then [‘p’, ‘q’] strip_assume_tac) >>
qabbrev_tac ‘G = gcd$gcd m n’ >> simp[] >>
‘G * q DIV G = q ∧ G * p DIV G = p’ by metis_tac [MULT_COMM, MULT_DIV] >>
simp[INT_NEG_DIV_FACTOR, integerTheory.INT_ABS_NEG,
integerTheory.INT_ABS_NUM, rat_of_int_ainv] >>
simp[RAT_MUL_NUM_CALCULATE]);
Definition pair_add_def:
pair_add (RatPair n1 d1) (RatPair n2 d2) =
div_gcd ((n1 * &d2) + (n2 * &d1)) (d1 * d2)
End
val _ = next_ml_names := ["+"];
val pair_add_v_thm = translate pair_add_def;
Triviality abs_rat_ONTO:
!r. ?f. abs_rat f = r
Proof
gen_tac >> qexists_tac ‘rep_rat r’ >> simp[rat_type_thm]
QED
val Eval_RAT_ADD = Q.prove(
`!v.
(RATIONAL_TYPE --> RATIONAL_TYPE --> RATIONAL_TYPE) pair_add v
==>
(RAT_TYPE --> RAT_TYPE --> RAT_TYPE) ($+) v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,Once RAT_TYPE_def,PULL_EXISTS,
pair_add_def,FORALL_PROD] >> rw [] >> res_tac >>
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,Once RAT_TYPE_def,PULL_EXISTS,
pair_add_def,FORALL_PROD] \\ rw [] \\ res_tac >>
pop_assum (strip_assume_tac o SPEC_ALL) >>
fs [] \\ asm_exists_tac \\ fs [] >>
rw [] \\ first_x_assum drule >> fs [pair_add_def] >>
qmatch_goalsub_rename_tac `(empty_state with refs := refs2)` >>
disch_then (qspec_then `refs2` mp_tac) >>
strip_tac \\ rpt (asm_exists_tac \\ fs []) >>
pop_assum mp_tac >>
ntac 2 (qpat_x_assum `~_` mp_tac) >>
rpt (pop_assum kall_tac) \\ rw [] \\ pop_assum mp_tac >>
match_mp_tac PAIR_TYPE_IMP_RAT_TYPE >>
simp[GSYM RAT_NO_ZERODIV] >>
simp[RAT_DIVDIV_ADD] >>
simp_tac bool_ss[GSYM rat_of_int_of_num, rat_of_int_MUL, rat_of_int_ADD,
integerTheory.INT_MUL])
|> (fn th => MATCH_MP th pair_add_v_thm)
|> add_user_proved_v_thm;
val Eval_REAL_ADD = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE --> RAT_TYPE) (+) v ==>
(REAL_TYPE --> REAL_TYPE --> REAL_TYPE) (+) v`,
match_mp_tac RAT_RAT_RAT \\ fs [real_of_rat_add])
|> (fn th => MATCH_MP th Eval_RAT_ADD)
|> add_user_proved_v_thm;
Definition pair_sub_def:
pair_sub (RatPair n1 d1) (RatPair n2 d2) =
div_gcd ((n1 * &d2) - (n2 * &d1)) (d1 * d2)
End
val _ = next_ml_names := ["-"];
val pair_sub_v_thm = translate pair_sub_def;
val Eval_RAT_SUB = Q.prove(
`!v. (RATIONAL_TYPE --> RATIONAL_TYPE --> RATIONAL_TYPE) pair_sub v ==>
(RAT_TYPE --> RAT_TYPE --> RAT_TYPE) ($-) v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,Once RAT_TYPE_def,PULL_EXISTS,
pair_sub_def,FORALL_PROD] \\ rw [] \\ res_tac
\\ SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,Once RAT_TYPE_def,
PULL_EXISTS, pair_add_def,FORALL_PROD] >> rw [] >>
res_tac >> pop_assum (strip_assume_tac o SPEC_ALL)
\\ fs [] \\ asm_exists_tac \\ fs []
\\ rw [] \\ first_x_assum drule \\ fs [pair_sub_def]
\\ qmatch_goalsub_rename_tac `(empty_state with refs := refs2)`
\\ disch_then (qspec_then `refs2` mp_tac)
\\ strip_tac \\ rpt (asm_exists_tac \\ fs [])
\\ pop_assum mp_tac
\\ ntac 2 (qpat_x_assum `~_` mp_tac)
\\ rpt (pop_assum kall_tac) \\ rw [] \\ pop_assum mp_tac
\\ match_mp_tac PAIR_TYPE_IMP_RAT_TYPE >>
simp[GSYM RAT_NO_ZERODIV, RAT_SUB_ADDAINV, RAT_DIV_AINV,
GSYM rat_of_int_ainv, RAT_DIVDIV_ADD,
integerTheory.INT_SUB_CALCULATE, integerTheory.INT_NEG_LMUL] >>
simp_tac bool_ss[GSYM rat_of_int_of_num, rat_of_int_MUL, rat_of_int_ADD,
integerTheory.INT_MUL])
|> (fn th => MATCH_MP th pair_sub_v_thm)
|> add_user_proved_v_thm;
val Eval_REAL_SUB = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE --> RAT_TYPE) (-) v ==>
(REAL_TYPE --> REAL_TYPE --> REAL_TYPE) (-) v`,
match_mp_tac RAT_RAT_RAT \\ fs [real_of_rat_sub])
|> (fn th => MATCH_MP th Eval_RAT_SUB)
|> add_user_proved_v_thm;
val rat_neg_lem = prove(
``!(x:rat). - x = 0 - x``,
fs[]);
val _ = next_ml_names := ["~"];
val Eval_RAT_NEG = translate rat_neg_lem;
val Eval_REAL_NEG = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE) (rat_ainv) v ==>
(REAL_TYPE --> REAL_TYPE) real_neg v`,
match_mp_tac RAT_RAT
\\ rewrite_tac [rat_neg_lem,GSYM realTheory.REAL_SUB_LZERO,real_of_rat_sub]
\\ rewrite_tac [real_of_rat_int])
|> (fn th => MATCH_MP th Eval_RAT_NEG)
|> add_user_proved_v_thm;
Definition pair_mul_def:
pair_mul (RatPair n1 d1) (RatPair n2 d2) = div_gcd (n1 * n2:int) (d1 * d2:num)
End
val _ = next_ml_names := ["*"];
val pair_mul_v_thm = translate pair_mul_def;
val Eval_RAT_MUL = Q.prove(
`!v.
(RATIONAL_TYPE --> RATIONAL_TYPE --> RATIONAL_TYPE) pair_mul v
==>
(RAT_TYPE --> RAT_TYPE --> RAT_TYPE) ($*) v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,Once RAT_TYPE_def,PULL_EXISTS,
pair_mul_def,FORALL_PROD] \\ rw [] \\ res_tac
\\ SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,Once RAT_TYPE_def,
PULL_EXISTS, pair_add_def,FORALL_PROD] \\ rw []
\\ res_tac
\\ pop_assum (strip_assume_tac o SPEC_ALL)
\\ fs [] \\ asm_exists_tac \\ fs []
\\ rw [] \\ first_x_assum drule \\ fs [pair_mul_def]
\\ qmatch_goalsub_rename_tac `(empty_state with refs := refs2)`
\\ disch_then (qspec_then `refs2` mp_tac)
\\ strip_tac \\ rpt (asm_exists_tac \\ fs [])
\\ pop_assum mp_tac
\\ ntac 2 (qpat_x_assum `~_` mp_tac)
\\ rpt (pop_assum kall_tac) \\ rw [] \\ pop_assum mp_tac
\\ match_mp_tac PAIR_TYPE_IMP_RAT_TYPE
\\ simp [RAT_DIVDIV_MUL, rat_of_int_MUL, RAT_MUL_NUM_CALCULATE])
|> (fn th => MATCH_MP th pair_mul_v_thm)
|> add_user_proved_v_thm;
val Eval_REAL_MUL = Q.prove(
`!v. (RAT_TYPE --> RAT_TYPE --> RAT_TYPE) ( * ) v ==>
(REAL_TYPE --> REAL_TYPE --> REAL_TYPE) ( * ) v`,
match_mp_tac RAT_RAT_RAT \\ fs [real_of_rat_mul])
|> (fn th => MATCH_MP th Eval_RAT_MUL)
|> add_user_proved_v_thm;
Definition pair_inv_def:
pair_inv (RatPair n1 d1) =
(RatPair (if n1 < 0 then - & d1 else (& d1):int) (num_of_int n1))
End
val _ = next_ml_names := ["inv"];
val pair_inv_v_thm = translate pair_inv_def;
val Eval_RAT_INV = Q.prove(
`PRECONDITION (r <> 0) ==>
!v. (RATIONAL_TYPE --> RATIONAL_TYPE) pair_inv v ==>
(Eq RAT_TYPE r --> RAT_TYPE) rat_minv v`,
SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,RAT_TYPE_def,PULL_EXISTS,
pair_mul_def,FORALL_PROD,Eq_def,PRECONDITION_def]
\\ rw [] \\ res_tac
\\ pop_assum (strip_assume_tac o SPEC_ALL)
\\ fs [] \\ asm_exists_tac \\ fs []
\\ rw [] \\ first_x_assum drule
\\ disch_then (qspec_then `refs` mp_tac)
\\ strip_tac \\ rpt (asm_exists_tac \\ fs [])
\\ rename [‘pair_inv (RatPair n d)’]
\\ ‘rat_of_int n ≠ 0’ by (strip_tac >> fs[])
\\ simp [RAT_DIV_MINV] >>
Cases_on ‘n’ >> fs[]
>- (rename [‘&d / &m = _’, ‘m ≠ 0’] >>
map_every qexists_tac [‘&d’, ‘m’] >>
fs[integerTheory.INT_ABS_NUM, pair_inv_def, GCD_SYM])
>- (rename [‘&d / rat_of_int (-&m)’, ‘m ≠ 0’, ‘pair_inv (RatPair (-&m) d)’] >>
map_every qexists_tac [‘-&d’, ‘m’] >>
fs[integerTheory.INT_ABS_NEG, integerTheory.INT_ABS_NUM,
rat_of_int_ainv, pair_inv_def, GCD_SYM] >>
simp[RAT_DIV_MULMINV, GSYM RAT_AINV_MINV, GSYM RAT_AINV_LMUL,
GSYM RAT_AINV_RMUL]))
|> UNDISCH
|> (fn th => MATCH_MP th pair_inv_v_thm)
|> add_user_proved_v_thm;
val Eval_REAL_INV = Q.prove(
`(!r. (PRECONDITION (r <> 0) ==> (Eq RAT_TYPE r --> RAT_TYPE) rat_minv v)) ==>
(!x. (PRECONDITION (x <> 0) ==> (Eq REAL_TYPE x --> REAL_TYPE) inv v))`,
rpt strip_tac
\\ FULL_SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,REAL_TYPE_def,PULL_EXISTS,
FORALL_PROD] \\ rw []
\\ fs [PRECONDITION_def,Eq_def,REAL_TYPE_def] \\ rveq
\\ rename1 `RAT_TYPE x2 v2`
\\ `x2 ≠ 0` by metis_tac [real_of_rat_int, real_of_rat_eq]
\\ first_x_assum drule
\\ disch_then drule
\\ disch_then (qspec_then `refs` mp_tac)
\\ strip_tac \\ fs []
\\ asm_exists_tac \\ fs []
\\ asm_exists_tac \\ fs [real_of_rat_inv])
|> (fn th => MATCH_MP th (GEN_ALL (DISCH_ALL Eval_RAT_INV)))
|> Q.SPEC `r` |> UNDISCH_ALL
|> add_user_proved_v_thm;
val _ = (next_ml_names := ["/"])
val Eval_RAT_DIV = translate ratTheory.RAT_DIV_MULMINV;
val rat_div_side_def = Eval_RAT_DIV
|> hyp |> hd |> rand |> repeat rator |> DB.match [] |> hd |> snd |> #1
|> update_precondition;
Theorem real_of_rat_eq_0:
real_of_rat r ≠ 0 ⇒ r ≠ 0
Proof
simp [GSYM (real_of_rat_int |> GEN_ALL |> Q.SPEC ‘0’)]
QED
Theorem Eval_REAL_DIV_lemma[local]:
!v. (∀v1 v2. PRECONDITION (rat_div_side v1 v2) ⇒
(Eq RAT_TYPE v1 --> Eq RAT_TYPE v2 --> RAT_TYPE) (/) v) ==>
PRECONDITION (r ≠ 0) ⇒ (REAL_TYPE --> Eq REAL_TYPE r --> REAL_TYPE) (/) v
Proof
rpt strip_tac
\\ fs [rat_div_side_def,PRECONDITION_def,PULL_FORALL]
\\ fs [Arrow_def,AppReturns_def,REAL_TYPE_def,PULL_EXISTS, FORALL_PROD, Eq_def]
\\ fs [rat_div_side_def,PRECONDITION_def,PULL_FORALL]
\\ rw []
\\ rename [‘empty_state with refs := R’]
\\ last_x_assum $ drule_at Any
\\ disch_then (fn th => mp_tac th \\ qspecl_then [‘1’,‘R’] strip_assume_tac th)
\\ gvs [GSYM PULL_FORALL]
\\ pop_assum kall_tac
\\ strip_tac
\\ first_assum $ irule_at Any
\\ rw [] \\ gvs []
\\ ‘x ≠ 0’ by fs [real_of_rat_eq_0]
\\ first_x_assum drule
\\ disch_then $ qspec_then ‘R’ strip_assume_tac
\\ qmatch_goalsub_rename_tac `(empty_state with refs := refs2)`
\\ first_x_assum drule
\\ disch_then (qspec_then `refs2` mp_tac)
\\ strip_tac \\ fs []
\\ rpt $ first_assum $ irule_at Any
\\ fs [real_of_rat_div]
\\ imp_res_tac eval_rel_11 \\ fs []
QED
val Eval_REAL_DIV =
Eval_RAT_DIV |> DISCH_ALL |> Q.GENL [‘v1’,‘v2’]
|> MATCH_MP Eval_REAL_DIV_lemma |> UNDISCH_ALL
|> add_user_proved_v_thm;
val _ = (next_ml_names := ["toString"]);
val toString_v_thm = translate mlratTheory.toString_def;
Theorem real_to_str_lemma[local]:
(RATIONAL_TYPE --> STRING_TYPE) toString v ⇒
(REAL_TYPE --> STRING_TYPE) real_to_str v
Proof
fs [Arrow_def,AppReturns_def,REAL_TYPE_def,RAT_TYPE_def] \\ rw []
\\ first_x_assum drule
\\ disch_then $ qspec_then ‘refs’ strip_assume_tac \\ fs []
\\ first_x_assum $ irule_at Any
\\ pop_assum mp_tac
\\ match_mp_tac EQ_IMPLIES
\\ AP_THM_TAC \\ AP_TERM_TAC
\\ fs [real_to_str_def]
\\ gvs [real_to_rational_def]
\\ AP_TERM_TAC
\\ pairarg_tac \\ gvs []
\\ ‘&d ≠ 0:rat’ by fs []
\\ gvs [real_of_rat_div,GSYM real_of_int_of_rat,real_of_rat_int]
\\ gvs [real_of_int_div_eq,SF CONJ_ss]
QED
Theorem real_to_str_v_thm = toString_v_thm
|> MATCH_MP real_to_str_lemma |> UNDISCH_ALL
|> add_user_proved_v_thm;
Definition pp_rat_def:
pp_rat r = mlprettyprinter$pp_token (toString r)
End
val _ = (next_ml_names := ["pp_rat"]);
val v = translate pp_rat_def;
Theorem rat_of_int_MUL_num:
rat_of_int n * &(m:num) = rat_of_int (n * &m) ∧
&(m:num) * rat_of_int n = rat_of_int (&m * n)
Proof
`&(m:num) = rat_of_int (&m)` by
fs[]>>
pop_assum SUBST_ALL_TAC>>
simp[rat_of_int_MUL]
QED
Theorem SGN_ABS:
SGN n * ABS n = n
Proof
EVAL_TAC>>
rw[]
QED
Theorem Int_Num_ABS:
&Num(ABS n) = ABS n
Proof
simp[integerTheory.INT_OF_NUM]
QED
Theorem Num_le:
x ≤ y ∧ x ≥ 0 ⇒
Num x ≤ Num y
Proof
intLib.ARITH_TAC
QED
Theorem int_divides_ABS:
x int_divides y ⇒
x int_divides (ABS y)
Proof
`ABS y = SGN y * y` by
(EVAL_TAC>>
rw[])>>
rw[]
QED
Theorem gcd_RATND:
gcd (Num (ABS n)) d = 1 ∧ 0 < d ⇒
RATN (rat_of_int n / &d) = n ∧
RATD (rat_of_int n / &d) = d
Proof
qmatch_goalsub_abbrev_tac`RATN r`>>
strip_tac>>
Cases_on`RATN r = 0`
>- (
fs[Abbr`r`]>>
pop_assum mp_tac>>
`&d ≠ 0` by
fs[]>>
drule RAT_DIV_EQ0>>
simp[]>>
rw[]>>
fs[gcd_def])>>
`ABS (RATN r) ≤ ABS n` by
metis_tac[RATND_THM]>>
`Num (ABS (RATN r)) ≤ Num (ABS n)` by
fs[Num_le]>>
`rat_of_int n / &d = rat_of_int (RATN r) / &RATD r` by
fs[]>>
pop_assum mp_tac>>
DEP_REWRITE_TAC [RAT_LDIV_EQ] >>
CONJ_TAC >- simp[] >>
PURE_REWRITE_TAC[RDIV_MUL_OUT]>>
DEP_REWRITE_TAC [RAT_RDIV_EQ] >>
simp[rat_of_int_MUL_num]>>
strip_tac>>
`SGN n = SGN (RATN r)` by (
pop_assum (mp_tac o Q.AP_TERM `SGN` )>>
simp[intExtensionTheory.INT_SGN_MUL2]>>
`SGN (&RATD r) = 1 ∧ SGN (&d) = 1` by
(EVAL_TAC>>rw[])>>
simp[])>>
`(ABS n) int_divides &d * RATN r` by
(simp[integerTheory.INT_DIVIDES]>>
qexists_tac`&RATD r * SGN n `>>
`&RATD r * SGN n * ABS n = &RATD r * (SGN n * ABS n)` by
intLib.ARITH_TAC>>
simp[SGN_ABS])>>
`ABS n int_divides RATN r` by
(drule int_arithTheory.INT_DIVIDES_RELPRIME_MUL>>
simp[]>>
disch_then(qspec_then`RATN r` assume_tac)>>
fs[Int_Num_ABS])>>
drule int_divides_ABS>>
strip_tac>>
`divides (Num (ABS n)) (Num (ABS (RATN r)))` by
metis_tac[int_arithTheory.INT_NUM_DIVIDES,Int_Num_ABS]>>
`Num (ABS n) ≤ Num (ABS (RATN r))` by (
`ABS (RATN r) > 0` by
intLib.ARITH_TAC>>
CCONTR_TAC>>fs[NOT_LESS_EQUAL]>>
drule_at Any ( dividesTheory.NOT_LT_DIVIDES)>>
fs[]>>
intLib.ARITH_TAC)>>
`ABS (RATN r) = ABS n` by
intLib.ARITH_TAC>>
CONJ_ASM1_TAC >-
metis_tac[SGN_ABS]>>
rw[] >>
qpat_x_assum`_ = _` mp_tac>>
simp[Once integerTheory.INT_MUL_COMM]>>
strip_tac>>
drule integerTheory.INT_EQ_RMUL_IMP>>
disch_then drule>>
simp[]
QED
Definition pair_num_def:
pair_num (RatPair i n) = i
End
val _ = next_ml_names := ["numerator"];
val v = translate pair_num_def;
val Eval_RAT_RATN = Q.prove(
`(RATIONAL_TYPE --> INT) pair_num v ⇒
(RAT_TYPE --> INT) RATN v`,
rw[]
\\ FULL_SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,RAT_TYPE_def,PULL_EXISTS,FORALL_PROD] \\ rw []
\\ first_x_assum drule
\\ disch_then (qspec_then `refs` mp_tac)
\\ rw[]
\\ asm_exists_tac \\ fs[]
\\ asm_exists_tac \\ fs[]
\\ fs[pair_num_def]
\\ simp[gcd_RATND])
|> (fn th => MATCH_MP th v)
|> add_user_proved_v_thm;
Definition pair_denom_def:
pair_denom (RatPair i n) = n
End
val _ = next_ml_names := ["denominator"];
val v = translate pair_denom_def;
val Eval_RAT_RATD = Q.prove(
`(RATIONAL_TYPE --> NUM) pair_denom v ⇒
(RAT_TYPE --> NUM) RATD v`,
rw[]
\\ FULL_SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,RAT_TYPE_def,PULL_EXISTS,FORALL_PROD] \\ rw []
\\ first_x_assum drule
\\ disch_then (qspec_then `refs` mp_tac)
\\ rw[]
\\ asm_exists_tac \\ fs[]
\\ asm_exists_tac \\ fs[]
\\ fs[pair_denom_def]
\\ simp[gcd_RATND])
|> (fn th => MATCH_MP th v)
|> add_user_proved_v_thm;
Definition pair_floor_def:
pair_floor (RatPair n d) = n / & d
End
val _ = next_ml_names := ["floor"];
val v = translate pair_floor_def;
Definition RAT_INT_FLOOR_def[nocompute]:
RAT_INT_FLOOR r = INT_FLOOR (real_of_rat r)
End
Theorem RAT_INT_FLOOR_compute:
RAT_INT_FLOOR r =
RATN r / & RATD r
Proof
rw[RAT_INT_FLOOR_def]>>
simp[real_of_rat_def]>>
Cases_on`RATN r`>>
simp[]>>
DEP_REWRITE_TAC[intrealTheory.INT_FLOOR_EQNS]>>
simp[]
QED
val Eval_RAT_FLOOR = Q.prove(
`(!r. (PRECONDITION (pair_floor_side r) ==>
(Eq RATIONAL_TYPE r --> INT) pair_floor v)) ==>
(RAT_TYPE --> INT) RAT_INT_FLOOR v`,
rw[]
\\ FULL_SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,RAT_TYPE_def,PULL_EXISTS,FORALL_PROD] \\ rw []
\\ fs [PRECONDITION_def,Eq_def] \\ rveq
\\ fs[ fetch "-" "pair_floor_side_def"]
\\ first_x_assum(qspec_then `RatPair n d` mp_tac)
\\ simp[]
\\ disch_then drule
\\ disch_then (qspec_then `refs` mp_tac)
\\ rw[]
\\ asm_exists_tac \\ fs[]
\\ asm_exists_tac \\ fs[]
\\ fs[pair_floor_def,RAT_INT_FLOOR_compute]
\\ simp[gcd_RATND])
|> (fn th => MATCH_MP th (DISCH_ALL v |> GEN_ALL))
|> add_user_proved_v_thm;
val Eval_REAL_FLOOR = Q.prove(
`!v. (RAT_TYPE --> INT) RAT_INT_FLOOR v ⇒
(REAL_TYPE --> INT) INT_FLOOR v`,
match_mp_tac RAT_INT>>
fs[RAT_INT_FLOOR_def])
|> (fn th => MATCH_MP th Eval_RAT_FLOOR)
|> add_user_proved_v_thm;
Definition RAT_INT_CEILING_def[nocompute]:
RAT_INT_CEILING r = INT_CEILING (real_of_rat r)
End
Theorem RAT_INT_CEILING_compute:
RAT_INT_CEILING r =
let i = RAT_INT_FLOOR r in
if rat_of_int i = r then i else i + 1
Proof
rw[RAT_INT_CEILING_def,RAT_INT_FLOOR_def]>>
fs[intrealTheory.INT_CEILING_INT_FLOOR]>>
fs[real_of_int_of_rat]
QED
val _ = next_ml_names := ["ceiling"];
val v = translate RAT_INT_CEILING_compute;
val Eval_REAL_CEILING = Q.prove(
`!v. (RAT_TYPE --> INT) RAT_INT_CEILING v ⇒
(REAL_TYPE --> INT) INT_CEILING v`,
match_mp_tac RAT_INT>>
fs[RAT_INT_CEILING_def])
|> (fn th => MATCH_MP th v)
|> add_user_proved_v_thm;
Definition pair_is_int_def:
pair_is_int (RatPair n d) <=> d = 1
End
val _ = next_ml_names := ["is_int"];
val v = translate pair_is_int_def;
Definition RAT_is_int_def:
RAT_is_int (x:rat) ⇔
x = rat_of_int (RAT_INT_FLOOR x)
End
Theorem RAT_is_int_compute:
RAT_is_int x ⇔ RATD x = 1
Proof
rw[RAT_is_int_def,EQ_IMP_THM]
>-
metis_tac[RATN_RATD_RAT_OF_INT]>>
fs[RAT_INT_FLOOR_def,real_of_rat_def,INT_FLOOR_real_of_int]>>
`x = rat_of_int (RATN x) / &1` by
metis_tac[RATND_THM]>>
fs[]
QED
val Eval_RAT_is_int = Q.prove(
`(RATIONAL_TYPE --> BOOL) pair_is_int v ⇒
(RAT_TYPE --> BOOL) RAT_is_int v`,
rw[]
\\ FULL_SIMP_TAC (srw_ss()) [Arrow_def,AppReturns_def,RAT_TYPE_def,PULL_EXISTS,FORALL_PROD] \\ rw []
\\ first_x_assum drule
\\ disch_then (qspec_then `refs` mp_tac)
\\ rw[]
\\ asm_exists_tac \\ fs[]
\\ asm_exists_tac \\ fs[]
\\ fs[RAT_is_int_compute,pair_is_int_def]
\\ simp[gcd_RATND])
|> (fn th => MATCH_MP th v)
|> add_user_proved_v_thm;
val Eval_REAL_is_int = Q.prove(
`(RAT_TYPE --> BOOL) RAT_is_int v ⇒
(REAL_TYPE --> BOOL) is_int v`,
match_mp_tac RAT_BOOL>>
fs[RAT_is_int_def,intrealTheory.is_int_def,RAT_INT_FLOOR_def]>>
metis_tac[real_of_rat_eq,real_of_int_of_rat])
|> (fn th => MATCH_MP th Eval_RAT_is_int)
|> add_user_proved_v_thm;
val RATIONAL_TYPE_def = fetch "-" "RATIONAL_TYPE_def"
Theorem EqualityType_RAT_TYPE = Q.prove(`
EqualityType RAT_TYPE`,
rw [EqualityType_def]
\\ fs [RAT_TYPE_def,RATIONAL_TYPE_def,INT_def,NUM_def] \\ EVAL_TAC
\\ rveq \\ fs []
\\ EQ_TAC \\ strip_tac \\ fs []
\\ fs [GSYM rat_of_int_def]
\\ irule rat_of_int_eq
\\ fs [])
|> store_eq_thm;