-
Notifications
You must be signed in to change notification settings - Fork 85
/
icing_realIdProofsScript.sml
873 lines (824 loc) · 35 KB
/
icing_realIdProofsScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
(*
Real-number identity proofs for Icing optimisations supported by CakeML
Each optimisation is defined in icing_optimisationsScript.
This file proves that optimisations are real-valued identities.
The overall real-number simluation proof for a particular run of the optimiser
from source_to_source2Script is build using the automation in
icing_optimisationsLib and the general theorems from
source_to_source2ProofsScript.
*)
open bossLib ml_translatorLib;
open semanticPrimitivesTheory evaluatePropsTheory;
open fpValTreeTheory fpSemPropsTheory fpOptTheory fpOptPropsTheory
icing_optimisationsTheory icing_rewriterTheory source_to_source2ProofsTheory
floatToRealTheory floatToRealProofsTheory icing_optimisationProofsTheory
evaluateTheory pureExpsTheory binary_ieeeTheory realLib realTheory RealArith;
val _ = temp_delsimps ["lift_disj_eq", "lift_imp_disj"]
open preamble;
val _ = new_theory "icing_realIdProofs";
val state_eqs = [state_component_equality, fpState_component_equality];
(** Automatically prove trivial goals about fp oracle **)
val fp_inv_tac = imp_res_tac evaluate_fp_opts_inv \\ fs[];
(** real number equivalences **)
Theorem isPureExp_realify:
(∀e.
isPureExp e ⇒
isPureExp (realify e)) ∧
(∀es.
isPureExpList es ⇒
isPureExpList (MAP realify es)) ∧
(∀pes.
isPurePatExpList pes ⇒
isPurePatExpList (MAP (λ(p,e). (p,realify e)) pes))
Proof
ho_match_mp_tac isPureExp_ind>>
rw[isPureExp_def, floatToRealTheory.realify_def]>>fs[]
>-
(Cases_on`e`>>simp[isPureExp_def, floatToRealTheory.realify_def])
>- (
`(λa. realify a) = realify` by
fs[ETA_AX]>>
simp[])>>
TOP_CASE_TAC>>
`(λa. realify a) = realify` by fs[ETA_AX]>>
fs[isPureExp_def,isPureOp_def]>>
every_case_tac>>fs[isPureOp_def,isPureExp_def]>>
simp[isPureOp_def]
QED
(* Not the full definition, since we only use together with isPureExp *)
Definition isIceFree_def:
(isIceFree (App op exl) <=>
(getOpClass op ≠ Icing ∨
?t. op = FP_top t ∧ LENGTH exl ≠ 3) ∧ isIceFreeList exl) /\
(isIceFree (Tannot e a) = isIceFree e) /\
(isIceFree (Lannot e l) = isIceFree e) /\
(isIceFree (FpOptimise _ e) = isIceFree e) ∧
(isIceFree (Con _ exl) <=> isIceFreeList exl) ∧
(isIceFree (Log _ e1 e2) = (isIceFree e1 /\ isIceFree e2)) ∧
(isIceFree (If e1 e2 e3) = (isIceFree e1 /\ isIceFree e2 /\ isIceFree e3)) /\
(isIceFree (Mat e pel) = (isIceFree e /\ isIceFreePatExpList pel)) ∧
(isIceFree (Let _ e1 e2) = (isIceFree e1 /\ isIceFree e2)) /\
(isIceFree _ = T) /\
(isIceFreeList [] = T) /\
(isIceFreeList (e::exl) = (isIceFree e /\ isIceFreeList exl)) ∧
(isIceFreePatExpList [] = T) /\
(isIceFreePatExpList ((p,e)::pel) = (isIceFree e /\ isIceFreePatExpList pel))
Termination
wf_rel_tac (`measure
\ x. case x of
| INL e => exp_size e
| INR (INL exl) => exp6_size exl
| INR (INR pel) => exp3_size pel`)
End
Theorem isIceFreeList_APPEND:
∀xs ys.
isIceFreeList (xs ++ ys) ⇔
isIceFreeList xs ∧ isIceFreeList ys
Proof
Induct>>rw[isIceFree_def]>>
metis_tac[]
QED
Theorem isIceFreeList_REVERSE:
∀es.
isIceFreeList (REVERSE es) ⇔
isIceFreeList es
Proof
Induct>>fs[isIceFree_def,isIceFreeList_APPEND]>>
metis_tac[]
QED
Theorem isIceFreeList_EVERY:
∀es.
isIceFreeList es ⇔
EVERY isIceFree es
Proof
Induct>>fs[isIceFree_def]
QED
Theorem isIceFreePatExpList_EVERY:
∀pes.
isIceFreePatExpList pes ⇔
EVERY (λ(p,e). isIceFree e) pes
Proof
Induct>>fs[isIceFree_def, FORALL_PROD]
QED
Theorem realify_IceFree:
∀e. isIceFree (realify e)
Proof
ho_match_mp_tac floatToRealTheory.realify_ind>>
rw[isIceFree_def,floatToRealTheory.realify_def]
>-
fs[isIceFreeList_EVERY,EVERY_MEM,MEM_MAP,PULL_EXISTS]
>- (
TOP_CASE_TAC>>
simp[isIceFree_def,isIceFreeList_EVERY,EVERY_MEM,astTheory.getOpClass_def,MEM_MAP,PULL_EXISTS]>>
every_case_tac>>
simp[isIceFree_def,isIceFreeList_EVERY,EVERY_MEM,astTheory.getOpClass_def,MEM_MAP,PULL_EXISTS])>>
simp[isIceFreePatExpList_EVERY,EVERY_MAP,EVERY_MEM,FORALL_PROD] >>
metis_tac[]
QED
Theorem evaluate_IceFree:
(! (s1:'a semanticPrimitives$state) env e s2 r ee.
evaluate s1 env e = (s2, Rval r) ∧
isPureExpList e ∧
isIceFreeList e
==>
Abbrev (s1.fp_state.opts = s2.fp_state.opts ∧
s1.fp_state.choices = s2.fp_state.choices)) ∧
(! (s1:'a semanticPrimitives$state) env v pes errv s2 r pese.
evaluate_match s1 env v pes errv = (s2, Rval r) ∧
isPurePatExpList pes ∧
isIceFreePatExpList pes
==>
Abbrev (s1.fp_state.opts = s2.fp_state.opts ∧
s1.fp_state.choices = s2.fp_state.choices))
Proof
ho_match_mp_tac evaluate_ind>>
rw[evaluate_def,isPureExp_def,isIceFree_def,isIceFreeList_REVERSE]>>rfs[markerTheory.Abbrev_def]
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[])
>- (
qpat_x_assum` _ = (_,_)` mp_tac>>
ntac 2 (TOP_CASE_TAC>>simp[])>>
TOP_CASE_TAC>>fs[]
>- (
fs[]>>
every_case_tac>>fs[]>>
fs[isPureOp_def])
>- (
fs[]>>
every_case_tac>>fs[]>>
fs[isPureOp_def])
>> every_case_tac
>>gs[state_component_equality,fpState_component_equality, isPureOp_def])
>- (
qpat_x_assum` _ = (_,_)` mp_tac>>
ntac 2 (TOP_CASE_TAC>>simp[])>>
TOP_CASE_TAC>>fs[]
>- (
fs[astTheory.getOpClass_def]>>
every_case_tac>>fs[]>>
fs[isPureOp_def])
>- (
fs[astTheory.getOpClass_def]>>
every_case_tac>>fs[]>>
fs[isPureOp_def])
>> every_case_tac
>> gs[state_component_equality,fpState_component_equality, isPureOp_def])
>- (
qpat_x_assum` _ = (_,_)` mp_tac>>
ntac 2 (TOP_CASE_TAC>>simp[])>>
fs[astTheory.getOpClass_def]>>
`LENGTH (REVERSE a) = LENGTH es` by
(imp_res_tac evaluate_length>>
simp[])>>
simp[do_app_def]>>
every_case_tac>>fs[])
>- (
qpat_x_assum` _ = (_,_)` mp_tac>>
ntac 2 (TOP_CASE_TAC>>simp[])>>
fs[astTheory.getOpClass_def]>>
`LENGTH (REVERSE a) = LENGTH es` by
(imp_res_tac evaluate_length>>
simp[])>>
simp[do_app_def]>>
every_case_tac>>fs[])
>- (every_case_tac>>fs[]>>
fs[do_log_def]>>every_case_tac>>fs[])
>- (every_case_tac>>fs[]>>
fs[do_log_def]>>every_case_tac>>fs[])
>- (every_case_tac>>fs[]>>
fs[do_if_def]>>every_case_tac>>fs[])
>- (every_case_tac>>fs[]>>
fs[do_if_def]>>every_case_tac>>fs[])
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[]>>
rfs[]>>
rveq>>simp[])
>- (every_case_tac>>fs[]>>
rfs[]>>
rveq>>simp[])
>- (every_case_tac>>fs[]>>
rfs[]>>
rveq>>simp[])
>- (every_case_tac>>fs[]>>
rfs[]>>
rveq>>simp[])
>- (every_case_tac>>fs[])
>- (every_case_tac>>fs[])
QED
Theorem evaluate_realify_state:
evaluate st1 env [realify e] = (st2,Rval a) ∧
isPureExp e ==>
st1 = st2
Proof
rw[]>>
imp_res_tac evaluate_IceFree>>
fs[markerTheory.Abbrev_def]>>
fs[isIceFree_def,isPureExp_def]>>
pop_assum mp_tac>>
impl_tac >-
metis_tac[realify_IceFree]>>
impl_keep_tac >-
metis_tac[isPureExp_realify]>>
strip_tac>>
drule isPureExp_same_ffi>>
disch_then imp_res_tac>>fs[]>>
imp_res_tac evaluate_fp_opts_inv >>
fs[state_component_equality,fpState_component_equality] >>
simp[FUN_EQ_THM]
QED
(**
Proofs that the currently supported optimisations are real-valued
identities. This allows us to establish a relation on the roundoff
error of the real-valued semantics of the initial program, and
the floating-point semantics of the optimised program later
**)
Theorem fp_same_sub_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_same_sub] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_same_sub_cases)
\\ fs[state_component_equality,fpState_component_equality]
\\ rpt strip_tac \\ qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[SimpL “$==>”, realify_def, evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ rpt strip_tac \\ rveq
\\ fs[floatToRealTheory.realify_def, evaluate_def, astTheory.getOpClass_def]
\\ ‘∃ choices r. evaluate st1 env [realify e1] = (st1 with fp_state := st1.fp_state with choices := choices, Rval [Real r])’
by (
qspecl_then [‘e1’, ‘env’] mp_tac
(CONJUNCT1 icing_rewriterProofsTheory.isFpArithExp_matched_evaluates_real)
\\ impl_tac
>- (gs[isFpArithExp_def, freeVars_real_bound_def] \\ imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ disch_then $ qspec_then ‘st1’ strip_assume_tac
\\ gs[state_component_equality,fpState_component_equality])
\\ simp[evaluate_def, realify_def, astTheory.getOpClass_def, do_app_def]
\\ first_x_assum $ mp_then Any mp_tac $ CONJUNCT1 evaluate_add_choices
\\ disch_then $ qspec_then ‘choices’ assume_tac \\ gs[]
\\ ‘st1 with <|refs := st1.refs; ffi := st1.ffi|> = st1’ by fs[state_component_equality]
\\ pop_assum (fs o single)
\\ fs[EVAL “fp64_to_real 0w”]
\\ ‘float_to_real <|Sign := 0w: word1; Exponent := 0w: word11; Significand := 0w: 52 word|> = 0’
by fs[float_to_real]
\\ rw[]
\\ fs[state_component_equality, fpState_component_equality]
\\ fs[realOpsTheory.real_bop_def, floatToRealTheory.getRealBop_def]
QED
Theorem fp_neg_times_minus_one_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_neg_times_minus_one] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_neg_times_minus_one_cases)
\\ fs[state_component_equality,fpState_component_equality]
\\ rpt strip_tac
\\ qpat_x_assum `evaluate _ _ _ = _` mp_tac
\\ simp[SimpL “$==>”, realify_def, evaluate_def, astTheory.getOpClass_def,
evaluate_case_case, do_app_def]
\\ ntac 2 (TOP_CASE_TAC \\ gs[])
\\ ‘q.fp_state.real_sem’ by (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ gs[] \\ imp_res_tac evaluate_sing \\ rveq \\ gs[]
\\ ‘st1 with <|refs := st1.refs; ffi := st1.ffi|> = st1’ by fs[state_component_equality]
\\ pop_assum (fs o single)
\\ Cases_on ‘v’ \\ gs[] \\ rpt strip_tac \\ rveq \\ gs[]
\\ gs[realify_def, evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ gs[state_component_equality, fpState_component_equality]
\\ gs[machine_ieeeTheory.fp64_to_real_def, float_to_real_def, realOpsTheory.real_uop_def,
realOpsTheory.real_bop_def, getRealUop_def, getRealBop_def,
machine_ieeeTheory.fp64_to_float_def]
\\ gs[realTheory.real_div, realTheory.REAL_MUL_LZERO, realTheory.REAL_ADD_RID,
realTheory.REAL_MUL_RID, realTheory.REAL_MUL_RINV, realTheory.REAL_MUL_RNEG]
QED
Theorem fp_neg_times_minus_one_real_id_unfold =
SIMP_RULE std_ss [icing_optimisationsTheory.fp_neg_times_minus_one_def,
reverse_tuple_def, fp_times_minus_one_neg_def]
fp_neg_times_minus_one_real_id;
Theorem fp_times_two_to_add_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_times_two_to_add] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_times_two_to_add_cases)
\\ fs[state_component_equality,fpState_component_equality]
\\ rpt strip_tac
\\ qpat_x_assum `evaluate _ _ _ = _` mp_tac
\\ simp[SimpL “$==>”, realify_def, evaluate_def, astTheory.getOpClass_def,
evaluate_case_case, do_app_def]
\\ ntac 4 (TOP_CASE_TAC \\ gs[])
\\ ‘q.fp_state.real_sem’ by (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ gs[] \\ imp_res_tac evaluate_sing \\ rveq \\ gs[]
\\ ‘st1 = q ∧ q = q'’ by (imp_res_tac evaluate_realify_state \\ gs[isPureExp_def])
\\ rveq \\ gs[] \\ rveq
\\ Cases_on ‘v’ \\ gs[] \\ rpt strip_tac \\ rveq
\\ gs[realify_def, evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ ‘q with <|refs := q.refs; ffi := q.ffi|> = q’ by fs[state_component_equality]
\\ pop_assum (fs o single)
\\ gs[state_component_equality, fpState_component_equality] \\ rpt strip_tac
\\ rveq \\ gs[]
\\ gs[EVAL “fp64_to_real 0x4000000000000000w”]
\\ gs[machine_ieeeTheory.fp64_to_real_def, float_to_real_def, realOpsTheory.real_uop_def,
realOpsTheory.real_bop_def, getRealUop_def, getRealBop_def,
machine_ieeeTheory.fp64_to_float_def]
\\ gs[realTheory.REAL_MUL_LZERO, realTheory.REAL_ADD_RID,
realTheory.REAL_MUL_RID, realTheory.REAL_MUL_RINV, realTheory.REAL_MUL_RNEG, REAL_OF_NUM_POW]
\\ RealArith.REAL_ASM_ARITH_TAC
QED
Theorem fp_times_two_to_add_real_id_unfold =
SIMP_RULE std_ss [icing_optimisationsTheory.fp_times_two_to_add_def]
fp_times_two_to_add_real_id;
Theorem fp_times_three_to_add_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_times_three_to_add] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_times_three_to_add_cases)
\\ fs[state_component_equality,fpState_component_equality]
\\ rpt strip_tac
\\ qpat_x_assum `evaluate _ _ _ = _` mp_tac
\\ simp[SimpL “$==>”, realify_def, evaluate_def, astTheory.getOpClass_def,
evaluate_case_case, do_app_def]
\\ ntac 6 (TOP_CASE_TAC \\ gs[])
\\ ‘q''.fp_state.real_sem’ by (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ gs[] \\ imp_res_tac evaluate_sing \\ rveq \\ gs[]
\\ ‘st1 = q ∧ q = q' ∧ q' = q''’
by (imp_res_tac evaluate_realify_state \\ gs[isPureExp_def])
\\ rveq \\ gs[] \\ rveq
\\ Cases_on ‘v’ \\ gs[] \\ rpt strip_tac \\ rveq
\\ gs[realify_def, evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ ‘q with <|refs := q.refs; ffi := q.ffi|> = q’ by fs[state_component_equality]
\\ pop_assum (fs o single)
\\ gs[state_component_equality, fpState_component_equality] \\ rpt strip_tac
\\ rveq \\ gs[]
\\ gs[machine_ieeeTheory.fp64_to_real_def, float_to_real_def, realOpsTheory.real_uop_def,
realOpsTheory.real_bop_def, getRealUop_def, getRealBop_def,
machine_ieeeTheory.fp64_to_float_def]
\\ gs[realTheory.real_div, realTheory.REAL_MUL_LZERO, realTheory.REAL_ADD_RID,
realTheory.REAL_MUL_RID, realTheory.REAL_MUL_RINV, realTheory.REAL_MUL_RNEG]
\\ RealArith.REAL_ASM_ARITH_TAC
QED
Theorem fp_times_three_to_add_real_id_unfold =
SIMP_RULE std_ss [icing_optimisationsTheory.fp_times_three_to_add_def]
fp_times_three_to_add_real_id;
Theorem fp_times_minus_one_neg_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_times_minus_one_neg] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_times_minus_one_neg_cases)
\\ fs[state_component_equality,fpState_component_equality]
\\ rpt strip_tac
\\ qpat_x_assum `evaluate _ _ _ = _` mp_tac
\\ simp[SimpL “$==>”, realify_def, evaluate_def, astTheory.getOpClass_def,
evaluate_case_case, do_app_def]
\\ ntac 2 (TOP_CASE_TAC \\ gs[])
\\ ‘q.fp_state.real_sem’ by (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ gs[] \\ imp_res_tac evaluate_sing \\ rveq \\ gs[]
\\ ‘st1 = q’
by (imp_res_tac evaluate_realify_state \\ gs[isPureExp_def])
\\ rveq \\ gs[] \\ rveq
\\ Cases_on ‘v’ \\ gs[] \\ rpt strip_tac \\ rveq
\\ gs[realify_def, evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ ‘q with <|refs := q.refs; ffi := q.ffi|> = q’ by fs[state_component_equality]
\\ pop_assum (fs o single)
\\ gs[state_component_equality, fpState_component_equality] \\ rpt strip_tac
\\ rveq \\ gs[]
\\ gs[machine_ieeeTheory.fp64_to_real_def, float_to_real_def, realOpsTheory.real_uop_def,
realOpsTheory.real_bop_def, getRealUop_def, getRealBop_def,
machine_ieeeTheory.fp64_to_float_def]
\\ gs[realTheory.real_div, realTheory.REAL_MUL_LZERO, realTheory.REAL_ADD_RID,
realTheory.REAL_MUL_RID, realTheory.REAL_MUL_RINV, realTheory.REAL_MUL_RNEG]
\\ RealArith.REAL_ASM_ARITH_TAC
QED
Theorem fp_times_minus_one_neg_real_id_unfold =
SIMP_RULE std_ss [icing_optimisationsTheory.fp_times_minus_one_neg_def]
fp_times_minus_one_neg_real_id;
Theorem fp_comm_gen_real_id:
∀ fpBop st1 st2 env e r.
fpBop ≠ FP_Sub ∧
fpBop ≠ FP_Div ⇒
is_real_id_exp [fp_comm_gen fpBop] st1 st2 env e r
Proof
rw[is_real_id_exp_def]
\\ qspecl_then [`e`, `fpBop`] strip_assume_tac
(ONCE_REWRITE_RULE [DISJ_COMM] fp_comm_gen_cases)
>- fs[state_component_equality,fpState_component_equality] >>
fs[floatToRealTheory.realify_def,evaluate_def,astTheory.getOpClass_def] >>
qpat_x_assum`_=(_,Rval r)` mp_tac>>
simp[evaluate_case_case]>>
ntac 4 (TOP_CASE_TAC>>simp[])>>
rveq>>fs[isPureExp_def]>>
imp_res_tac evaluate_realify_state >>
rveq>>simp[]>>
imp_res_tac evaluate_sing>>fs[]>>
Cases_on`fpBop`>>fs[floatToRealTheory.getRealBop_def,do_app_def]>>
every_case_tac>>simp[state_component_equality,fpState_component_equality] >>
simp[realOpsTheory.real_bop_def] >>
metis_tac[realTheory.REAL_ADD_COMM]
QED
Theorem fp_comm_gen_real_id_unfold_add = SIMP_RULE std_ss [fp_bop_distinct, icing_optimisationsTheory.fp_comm_gen_def] (Q.SPEC ‘FP_Add’ fp_comm_gen_real_id);
Theorem fp_comm_gen_real_id_unfold_mul = SIMP_RULE std_ss [fp_bop_distinct, icing_optimisationsTheory.fp_comm_gen_def] (Q.SPEC ‘FP_Mul’ fp_comm_gen_real_id);
Theorem fp_assoc_gen_real_id:
∀ fpBop st1 st2 env e r.
fpBop ≠ FP_Sub ∧
fpBop ≠ FP_Div ⇒
is_real_id_exp [fp_assoc_gen fpBop] st1 st2 env e r
Proof
rw[is_real_id_exp_def]
\\ simp[is_rewriteFPexp_correct_def] \\ rpt strip_tac
\\ qspecl_then [‘e’, ‘fpBop’] assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_assoc_gen_cases)
\\ fs[]
>- fs[state_component_equality,fpState_component_equality] >>
fs[floatToRealTheory.realify_def,evaluate_def,astTheory.getOpClass_def] >>
qpat_x_assum`_=(_,Rval r)` mp_tac>>
simp[evaluate_case_case]>>
ntac 4 (TOP_CASE_TAC>>simp[])>>
IF_CASES_TAC>>simp[]>>
imp_res_tac evaluate_sing>>rveq>>fs[]>>
simp[do_app_def]>>
Cases_on`v`>>fs[]>>
Cases_on`v'`>>fs[]>>
simp[evaluate_case_case]>>
ntac 2 (TOP_CASE_TAC>>simp[])>>
`q' with <|refs := q'.refs; ffi := q'.ffi|> = q'` by
fs[state_component_equality,fpState_component_equality] >>
fs[]>>
IF_CASES_TAC>>simp[]>>
imp_res_tac evaluate_sing>>rveq>>fs[]>>
Cases_on`v`>>rveq>>fs[]>>
strip_tac>>rveq>>simp[]>>
simp[state_component_equality,fpState_component_equality]>>
EVAL_TAC>>simp[]>>
Cases_on`fpBop`>>fs[floatToRealTheory.getRealBop_def] >>
metis_tac[realTheory.REAL_ADD_ASSOC]
QED
Theorem fp_assoc_gen_real_id_unfold_add = SIMP_RULE std_ss [fp_bop_distinct, icing_optimisationsTheory.fp_assoc_gen_def] (Q.SPEC ‘FP_Add’ fp_assoc_gen_real_id);
Theorem fp_assoc_gen_real_id_unfold_mul = SIMP_RULE std_ss [fp_bop_distinct, icing_optimisationsTheory.fp_assoc_gen_def] (Q.SPEC ‘FP_Mul’ fp_assoc_gen_real_id);
Theorem fp_assoc2_gen_real_id:
∀ fpBop st1 st2 env e r.
fpBop ≠ FP_Sub ∧
fpBop ≠ FP_Div ⇒
is_real_id_exp [fp_assoc2_gen fpBop] st1 st2 env e r
Proof
rw[is_real_id_exp_def]
\\ qspecl_then [‘e’, ‘fpBop’] assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_assoc2_gen_cases)
\\ fs[]
>- fs[state_component_equality,fpState_component_equality]
\\ fs[floatToRealTheory.realify_def, evaluate_def, astTheory.getOpClass_def]
\\ qpat_x_assum ‘_ = (_, Rval r)’ mp_tac
\\ simp[evaluate_case_case]
\\ ntac 6 (TOP_CASE_TAC \\ simp[])
\\ IF_CASES_TAC \\ simp[]
\\ imp_res_tac evaluate_sing \\ rveq \\ fs[]
\\ simp[do_app_def]
\\ Cases_on ‘v’ \\ fs[CaseEq "option"]
\\ Cases_on ‘v'’ \\ fs[CaseEq "option"]
\\ simp[evaluate_case_case]
\\ ntac 2 (TOP_CASE_TAC \\ simp[])
\\ ‘q'' with <|refs := q''.refs; ffi := q''.ffi|> = q''’ by
fs[state_component_equality,fpState_component_equality]
\\ fs[]
\\ strip_tac
\\ ‘q''.fp_state.real_sem’ by fp_inv_tac
\\ ‘q'.fp_state.real_sem’ by fp_inv_tac
\\ fs[]
\\ imp_res_tac evaluate_sing \\ rveq \\ fs[]
\\ fs[]
\\ fs[isPureExp_def]
\\ fs[evaluate_def]
\\ TOP_CASE_TAC \\ fs[CaseEq "result"]
\\ fs[CaseEq "result", CaseEq "list"]
\\ fs[evaluate_def]
\\ ‘q' with <|refs := q'.refs; ffi := q'.ffi|> = q'’ by
fs[state_component_equality,fpState_component_equality]
\\ ‘isPureExp (realify e1)’ by fs[isPureExp_realify]
\\ fs[floatToRealTheory.realify_def, evaluate_def, astTheory.getOpClass_def]
\\ fs[floatToRealTheory.realify_def]
\\ fs[CaseEq "result", CaseEq "list", CaseEq "prod"] \\ rveq
\\ ‘q'³'.fp_state.real_sem’ by fp_inv_tac
\\ fs[CaseEq "result", CaseEq "list", CaseEq "prod"]
\\ qexists_tac ‘q''.fp_state.choices’ \\ simp[state_component_equality, fpState_component_equality]
\\ Cases_on ‘fpBop’ \\ fs[floatToRealTheory.getRealBop_def]
\\ EVAL_TAC
>- metis_tac[realTheory.REAL_ADD_ASSOC]
>- metis_tac[realTheory.REAL_MUL_ASSOC]
QED
Theorem fp_assoc2_gen_real_id_unfold_add =
SIMP_RULE std_ss [reverse_tuple_def, fp_bop_distinct,
icing_optimisationsTheory.fp_assoc_gen_def,
icing_optimisationsTheory.fp_assoc2_gen_def]
(Q.SPEC ‘FP_Add’ fp_assoc2_gen_real_id);
Theorem fp_assoc2_gen_real_id_unfold_mul =
SIMP_RULE std_ss [fp_bop_distinct, reverse_tuple_def,
icing_optimisationsTheory.fp_assoc_gen_def,
icing_optimisationsTheory.fp_assoc2_gen_def]
(Q.SPEC ‘FP_Mul’ fp_assoc2_gen_real_id);
Theorem fma_intro_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_fma_intro] st1 st2 env e r
Proof
rw[is_real_id_exp_def]
\\ qspec_then ‘e’ strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_fma_intro_cases)
\\ fs[]
>- fs[state_component_equality,fpState_component_equality] >>
fs[floatToRealTheory.realify_def,evaluate_def,astTheory.getOpClass_def] >>
qpat_x_assum`_=(_,Rval r)` mp_tac>>
simp[evaluate_case_case]>>
ntac 6 (TOP_CASE_TAC>>simp[])>>
IF_CASES_TAC>>simp[]>>
imp_res_tac evaluate_sing>>rveq>>fs[]>>
simp[do_app_def]>>
Cases_on`v`>>fs[]>>
Cases_on`v'`>>fs[]>>
Cases_on`v''`>>fs[]>>
EVAL_TAC>>simp[]>>
fs[state_component_equality,fpState_component_equality]
QED
Theorem fp_fma_intro_real_id_unfold = REWRITE_RULE [fp_fma_intro_def] fma_intro_real_id;
Theorem fp_sub_add_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_sub_add] st1 st2 env e r
Proof
rw[is_real_id_exp_def]
\\ qspec_then ‘e’ strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_sub_add_cases)
\\ fs[]
>- fs[state_component_equality,fpState_component_equality] >>
fs[floatToRealTheory.realify_def,evaluate_def,astTheory.getOpClass_def] >>
qpat_x_assum`_=(_,Rval r)` mp_tac>>
simp[evaluate_case_case]>>
ntac 2 (TOP_CASE_TAC>>simp[])>>
IF_CASES_TAC>>simp[]>>
imp_res_tac evaluate_sing>>rveq>>fs[]>>
simp[do_app_def]>>
Cases_on`v`>>fs[]>>
simp[evaluate_case_case]>>
ntac 2 (TOP_CASE_TAC>>simp[])>>
`q with <|refs := q.refs; ffi := q.ffi|> = q` by
fs[state_component_equality,fpState_component_equality] >>
fs[]>>
IF_CASES_TAC>>fs[]>>
imp_res_tac evaluate_sing>>rveq>>fs[]>>
Cases_on`v`>>rveq>>fs[]>>
EVAL_TAC>>simp[]>>
fs[state_component_equality,fpState_component_equality]>>
metis_tac[realTheory.real_sub]
QED
Theorem fp_sub_add_real_id_unfold = REWRITE_RULE [fp_sub_add_def] fp_sub_add_real_id;
Theorem fp_add_sub_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_add_sub] st1 st2 env e r
Proof
rw[is_real_id_exp_def]
\\ qspec_then ‘e’ strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_add_sub_cases)
\\ fs[]
>- fs[state_component_equality,fpState_component_equality]
\\ fs[floatToRealTheory.realify_def, evaluate_def, astTheory.getOpClass_def]
\\ qpat_x_assum ‘_ = (_, Rval r)’ mp_tac
\\ simp[evaluate_case_case]
\\ ntac 2 (TOP_CASE_TAC \\ simp[])
\\ IF_CASES_TAC \\ simp[]
\\ imp_res_tac evaluate_sing \\ rveq \\ fs[]
\\ simp[do_app_def]
\\ Cases_on ‘v’ \\ fs[]
\\ simp[evaluate_case_case]
\\ ntac 2 (TOP_CASE_TAC \\ simp[])
\\ ‘q.fp_state.real_sem’ by fp_inv_tac \\ fs[]
\\ ‘q'.fp_state.real_sem’ by fp_inv_tac \\ fs[]
\\ imp_res_tac evaluate_sing \\ rveq \\ fs[]
\\ Cases_on ‘v’ \\ fs[] \\ Cases_on ‘v'’ \\ fs[] \\ rveq \\ fs[]
>- (
rpt strip_tac
\\ ‘q with <|refs := q.refs; ffi := q.ffi|> = q’ by fs[state_component_equality,fpState_component_equality]
\\ fs[] \\ rveq
\\ fs[state_component_equality,fpState_component_equality]
\\ EVAL_TAC \\ fs[] \\ metis_tac[realTheory.real_sub]
)
QED
Theorem fp_add_sub_real_id_unfold =
REWRITE_RULE [reverse_tuple_def, fp_sub_add_def, fp_add_sub_def]
fp_add_sub_real_id;
Theorem fp_neg_push_mul_r_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_neg_push_mul_r] st1 st2 env e r
Proof
rw[is_real_id_exp_def]
\\ qspec_then ‘e’ strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_neg_push_mul_r_cases)
\\ fs[]
>- fs[state_component_equality,fpState_component_equality] >>
fs[floatToRealTheory.realify_def,evaluate_def,astTheory.getOpClass_def] >>
qpat_x_assum`_=(_,Rval r)` mp_tac>>
simp[evaluate_case_case]>>
ntac 4 (TOP_CASE_TAC>>simp[])>>
IF_CASES_TAC>>simp[]>>
imp_res_tac evaluate_sing>>rveq>>fs[]>>
simp[do_app_def]>>
Cases_on`v`>>fs[]>>
simp[evaluate_case_case]>>
ntac 2 (TOP_CASE_TAC>>simp[])>>
`q' with <|refs := q'.refs; ffi := q'.ffi|> = q'` by
fs[state_component_equality,fpState_component_equality] >>
fs[]>>
IF_CASES_TAC>>fs[]>>
imp_res_tac evaluate_sing>>rveq>>fs[]>>
Cases_on`v`>>rveq>>fs[]>>
Cases_on`v'`>>rveq>>fs[]>>
EVAL_TAC>>simp[]>>
fs[state_component_equality,fpState_component_equality]>>
metis_tac[realTheory.REAL_NEG_LMUL,realTheory.REAL_MUL_COMM]
QED
Theorem fp_neg_push_mul_r_real_id_unfold =
REWRITE_RULE [fp_neg_push_mul_r_def] fp_neg_push_mul_r_real_id;
Theorem fp_times_zero_real_id:
∀ st1 st2 env e r e1 st1N r1.
is_real_id_exp [fp_times_zero] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_times_zero_cases)
\\ fs[state_component_equality,fpState_component_equality]
\\ rpt strip_tac \\ qpat_x_assum ‘evaluate _ _ _ = _’ mp_tac
\\ simp[SimpL “$==>”, realify_def, evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ rpt strip_tac \\ rveq
\\ fs[floatToRealTheory.realify_def, evaluate_def, astTheory.getOpClass_def]
\\ ‘∃ choices r. evaluate st1 env [realify e1] = (st1 with fp_state := st1.fp_state with choices := choices, Rval [Real r])’
by (
qspecl_then [‘e1’, ‘env’] mp_tac
(CONJUNCT1 icing_rewriterProofsTheory.isFpArithExp_matched_evaluates_real)
\\ impl_tac
>- (gs[isFpArithExp_def, freeVars_real_bound_def] \\ imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ disch_then $ qspec_then ‘st1’ strip_assume_tac
\\ gs[state_component_equality,fpState_component_equality])
\\ simp[evaluate_def, realify_def, astTheory.getOpClass_def, do_app_def]
\\ ‘st1 with <|refs := st1.refs; ffi := st1.ffi|> = st1’ by fs[state_component_equality]
\\ pop_assum (fs o single)
\\ ‘q with <|refs := q.refs; ffi := q.ffi|> = q’ by fs[state_component_equality]
\\ fs[] \\ rfs[] \\ fs[]
\\ fs[EVAL “fp64_to_real 0w”]
\\ ‘float_to_real <|Sign := 0w: word1; Exponent := 0w: word11; Significand := 0w: 52 word|> = 0’
by (
fs[float_to_real]
)
\\ rw[]
\\ fs[state_component_equality, fpState_component_equality]
\\ fs[realOpsTheory.real_bop_def, floatToRealTheory.getRealBop_def]
QED
Theorem fp_times_zero_real_id_unfold = REWRITE_RULE [fp_times_zero_def] fp_times_zero_real_id;
Theorem fp_distribute_gen_real_id:
∀ fpBopOuter fpBopInner st1 st2 env e r.
fpBopOuter ≠ FP_Mul ∧
fpBopOuter ≠ FP_Div ∧
fpBopInner ≠ FP_Add ∧
fpBopInner ≠ FP_Sub ⇒
is_real_id_exp [fp_distribute_gen fpBopInner fpBopOuter] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’, ‘fpBopInner’, ‘fpBopOuter’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_distribute_gen_cases)
\\ fs[]
\\ rpt strip_tac
\\ fs[floatToRealTheory.realify_def, evaluate_def, astTheory.getOpClass_def]
>- (qexists_tac ‘st2.fp_state.choices’ \\ fs[state_component_equality, fpState_component_equality])
\\ qpat_x_assum ‘_ = (_, Rval r)’ mp_tac
\\ simp[evaluate_case_case]
\\ ntac 6 (TOP_CASE_TAC \\ fs[CaseEq"option"])
\\ rpt strip_tac \\ rveq \\ fs[]
\\ fs[do_app_def]
\\ ‘q'.fp_state.real_sem’ by fp_inv_tac \\ fs[]
\\ imp_res_tac evaluate_sing \\ rveq \\ fs[]
\\ Cases_on ‘v'’ \\ fs[CaseEq"option"] \\ Cases_on ‘v''’ \\ fs[CaseEq"option"]
\\ ‘q''.fp_state.real_sem’ by fp_inv_tac \\ fs[]
\\ Cases_on ‘v’ \\ fs[CaseEq"option"]
\\ ‘q' with <|refs := q'.refs; ffi := q'.ffi|> = q'’ by fs[state_component_equality] \\ fs[]
\\ fs[isPureExp_def]
\\ imp_res_tac (GEN_ALL evaluate_realify_state)
\\ imp_res_tac evaluate_sing \\ rveq \\ fs[]
\\ Cases_on ‘v’ \\ fs[CaseEq"option"] \\ Cases_on ‘v''’ \\ fs[CaseEq"option"]
\\ fs[state_component_equality,fpState_component_equality]
\\ fs[realOpsTheory.real_bop_def, floatToRealTheory.getRealBop_def]
\\ Cases_on ‘fpBopOuter’ \\ fs[floatToRealTheory.getRealBop_def]
\\ Cases_on ‘fpBopInner’ \\ fs[floatToRealTheory.getRealBop_def]
\\ TRY (REAL_ASM_ARITH_TAC)
\\ metis_tac [realTheory.REAL_ADD_RDISTRIB, realTheory.REAL_SUB_RDISTRIB, realTheory.REAL_DIV_ADD,
realTheory.real_div]
QED
Theorem fp_distribute_gen_real_id_unfold =
SIMP_RULE std_ss [fp_bop_distinct, fp_distribute_gen_def] (Q.SPECL [‘FP_Add’, ‘FP_Mul’] fp_distribute_gen_real_id);
Theorem fp_undistribute_gen_real_id:
∀ fpBopOuter fpBopInner st1 st2 env e r.
fpBopOuter ≠ FP_Mul ∧
fpBopOuter ≠ FP_Div ∧
fpBopInner ≠ FP_Add ∧
fpBopInner ≠ FP_Sub ⇒
is_real_id_exp [fp_undistribute_gen fpBopInner fpBopOuter] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’, ‘fpBopInner’, ‘fpBopOuter’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_undistribute_gen_cases)
\\ fs[]
\\ rpt strip_tac
\\ fs[floatToRealTheory.realify_def, evaluate_def, astTheory.getOpClass_def]
>- (qexists_tac ‘st2.fp_state.choices’ \\ fs[state_component_equality, fpState_component_equality])
\\ qpat_x_assum ‘_ = (_, Rval r)’ mp_tac
\\ simp[evaluate_case_case]
\\ ntac 6 (TOP_CASE_TAC \\ fs[CaseEq"option"])
\\ rpt strip_tac \\ rveq \\ fs[]
\\ fs[do_app_def]
\\ ‘q'.fp_state.real_sem’ by fp_inv_tac \\ fs[]
\\ imp_res_tac evaluate_sing \\ rveq \\ fs[]
\\ Cases_on ‘v’ \\ fs[CaseEq"option"] \\ Cases_on ‘v'’ \\ fs[CaseEq"option"]
\\ ‘q' with <|refs := q'.refs; ffi := q'.ffi|> = q'’ by fs[state_component_equality] \\ fs[]
\\ fs[isPureExp_def]
\\ imp_res_tac (GEN_ALL evaluate_realify_state) \\ rveq \\ fs[]
\\ Cases_on ‘evaluate q env [realify e2]’ \\ fs[] \\ rveq \\ fs[]
\\ Cases_on ‘evaluate q env [realify e1]’ \\ fs[CaseEq"option"]
\\ imp_res_tac evaluate_sing \\ rveq \\ fs[]
\\ Cases_on ‘r'³'’ \\ fs[CaseEq"option"]
\\ ‘q'.fp_state.real_sem’ by fp_inv_tac \\ fs[]
\\ imp_res_tac evaluate_sing \\ rveq \\ fs[]
\\ Cases_on ‘v''’ \\ fs[CaseEq"option"] \\ Cases_on ‘v'³'’ \\ fs[CaseEq"option"]
\\ rveq \\ fs[]
\\ ‘q' with <|refs := q'.refs; ffi := q'.ffi|> = q'’ by fs[state_component_equality] \\ fs[] \\ rveq
\\ ‘q'.fp_state.real_sem’ by fp_inv_tac \\ fs[]
\\ fs[state_component_equality, fpState_component_equality]
\\ fs[realOpsTheory.real_bop_def, floatToRealTheory.getRealBop_def]
\\ Cases_on ‘fpBopOuter’ \\ fs[floatToRealTheory.getRealBop_def]
\\ Cases_on ‘fpBopInner’ \\ fs[floatToRealTheory.getRealBop_def]
\\ TRY REAL_ASM_ARITH_TAC
\\ simp[REAL_ADD_LDISTRIB, REAL_SUB_LDISTRIB, real_div]
QED
Theorem fp_undistribute_gen_real_id_unfold =
SIMP_RULE std_ss [fp_bop_distinct, reverse_tuple_def, fp_distribute_gen_def,
fp_undistribute_gen_def]
(Q.SPECL [‘FP_Add’, ‘FP_Mul’] fp_undistribute_gen_real_id);
Theorem fp_plus_zero_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_plus_zero] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_plus_zero_cases)
\\ fs[state_component_equality,fpState_component_equality]
\\ rpt strip_tac
\\ simp[realify_def, evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ ‘st1 with <|refs := st1.refs; ffi := st1.ffi|> = st1’ by fs[state_component_equality]
\\ pop_assum (fs o single)
\\ ‘st2.fp_state.real_sem’ by (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ gs[] \\ imp_res_tac evaluate_sing \\ rveq
\\ ‘∃ choices r. evaluate st1 env [realify e1] = (st1 with fp_state := st1.fp_state with choices := choices, Rval [Real r])’
by (
qspecl_then [‘e1’, ‘env’] mp_tac
(CONJUNCT1 icing_rewriterProofsTheory.isFpArithExp_matched_evaluates_real)
\\ impl_tac
>- (gs[isFpArithExp_def, freeVars_real_bound_def] \\ imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ disch_then $ qspec_then ‘st1’ strip_assume_tac
\\ gs[state_component_equality,fpState_component_equality])
\\ gs[] \\ rveq \\ gs[state_component_equality, fpState_component_equality]
\\ fs[EVAL “fp64_to_real 0w”]
\\ ‘float_to_real <|Sign := 0w: word1; Exponent := 0w: word11; Significand := 0w: 52 word|> = 0’
by (
fs[float_to_real]
)
\\ fs[realOpsTheory.real_bop_def, floatToRealTheory.getRealBop_def]
QED
Theorem fp_plus_zero_real_id_unfold = REWRITE_RULE [fp_plus_zero_def] fp_plus_zero_real_id;
Theorem fp_times_one_real_id:
∀ st1 st2 env e r.
is_real_id_exp [fp_times_one] st1 st2 env e r
Proof
rpt strip_tac
\\ fs[is_real_id_exp_def]
\\ qspecl_then [‘e’] strip_assume_tac (ONCE_REWRITE_RULE [DISJ_COMM] fp_times_one_cases)
\\ fs[state_component_equality,fpState_component_equality]
\\ rpt strip_tac
\\ simp[realify_def, evaluate_def, astTheory.getOpClass_def, do_app_def]
\\ ‘st1 with <|refs := st1.refs; ffi := st1.ffi|> = st1’ by fs[state_component_equality]
\\ pop_assum (fs o single)
\\ ‘st2.fp_state.real_sem’ by (imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ gs[] \\ imp_res_tac evaluate_sing \\ rveq
\\ ‘∃ choices r. evaluate st1 env [realify e1] = (st1 with fp_state := st1.fp_state with choices := choices, Rval [Real r])’
by (
qspecl_then [‘e1’, ‘env’] mp_tac
(CONJUNCT1 icing_rewriterProofsTheory.isFpArithExp_matched_evaluates_real)
\\ impl_tac
>- (gs[isFpArithExp_def, freeVars_real_bound_def] \\ imp_res_tac evaluate_fp_opts_inv \\ gs[])
\\ disch_then $ qspec_then ‘st1’ strip_assume_tac
\\ gs[state_component_equality,fpState_component_equality])
\\ gs[] \\ rveq \\ gs[state_component_equality, fpState_component_equality]
\\ fs[EVAL “(fp64_to_real 0x3FF0000000000000w)”]
\\ fs[EVAL “real_bop (getRealBop FP_Mul) r (float_to_real <|Sign := (0w :word1); Exponent := (1023w :word11); Significand := (0w :52 word)|>)”]
\\ fs[float_to_real]
\\ fs[realTheory.real_div, realTheory.REAL_MUL_LZERO, realTheory.REAL_ADD_RID,
realTheory.REAL_MUL_RID, realTheory.REAL_MUL_RINV]
QED
Theorem fp_times_one_real_id_unfold = REWRITE_RULE [fp_times_one_def] fp_times_one_real_id;
val _ = export_theory();