-
Notifications
You must be signed in to change notification settings - Fork 85
/
preamble.sml
582 lines (511 loc) · 18.4 KB
/
preamble.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
(*
Proof tools (e.g. tactics) used throughout the development.
*)
structure preamble =
struct
local open intLib wordsLib in end;
open set_relationTheory; (* comes first so relationTheory takes precedence *)
open ASCIInumbersTheory BasicProvers Defn HolKernel Parse SatisfySimps Tactic
monadsyntax alistTheory alignmentTheory arithmeticTheory bagTheory boolLib
boolSimps bossLib byteTheory containerTheory combinTheory dep_rewrite
finite_mapTheory indexedListsTheory listTheory llistTheory
lprefix_lubTheory markerLib miscTheory mp_then optionTheory pairLib
pairTheory pred_setTheory quantHeuristicsLib relationTheory res_quanTheory
rich_listTheory sortingTheory sptreeTheory stringTheory sumTheory
wordsTheory;
(* TOOD: move? *)
val wf_rel_tac = WF_REL_TAC
val induct_on = Induct_on
val cases_on = Cases_on;
val every_case_tac = BasicProvers.EVERY_CASE_TAC;
val full_case_tac = BasicProvers.FULL_CASE_TAC;
val sym_sub_tac = SUBST_ALL_TAC o SYM;
fun asm_match q = Q.MATCH_ASSUM_RENAME_TAC q
val match_exists_tac = part_match_exists_tac (hd o strip_conj)
val asm_exists_tac = first_assum(match_exists_tac o concl)
val has_pair_type = can dest_prod o type_of
fun impl_subgoal_tac th =
let
val hyp_to_prove = lhand (concl th)
in
SUBGOAL_THEN hyp_to_prove (fn thm => assume_tac (MP th thm))
end;
(* -- *)
fun check_tag t = Tag.isEmpty t orelse Tag.isDisk t
val check_thm = Lib.assert (check_tag o Thm.tag)
val option_bind_tm = prim_mk_const{Thy="option",Name="OPTION_BIND"};
val option_ignore_bind_tm = prim_mk_const{Thy="option",Name="OPTION_IGNORE_BIND"};
val option_guard_tm = prim_mk_const{Thy="option",Name="OPTION_GUARD"};
structure option_monadsyntax = struct
fun temp_add_option_monadsyntax() =
let
open monadsyntax
in
temp_enable_monadsyntax ();
temp_enable_monad "option"
end
fun add_option_monadsyntax() =
let
open monadsyntax
in
enable_monadsyntax();
enable_monad "option"
end
end
val _ = set_trace"Goalstack.print_goal_at_top"0 handle HOL_ERR _ => set_trace"goalstack print goal at top"0
(* treat the given eq_tms (list of equations) as rewrite thereoms,
return the resulting term, note we can't return a theorem because
the equations might not be theorems -- indeed, in many cases they
won't be theorems.
*)
fun term_rewrite eq_tms tm =
tm |> QCONV (PURE_REWRITE_CONV (map (curry mk_thm []) eq_tms))
|> concl |> rhs
(* TODO: move to Lib (or Portable)? *)
fun itlist3 f L1 L2 L3 base_value =
let
fun itl ([], [], []) = base_value
| itl (a :: rst1, b :: rst2, c :: rst3) = f a b c (itl (rst1, rst2, rst3))
| itl _ = raise mk_HOL_ERR "Lib" "itlist3" "lists of different length"
in
itl (L1, L2, L3)
end
fun zip3 ([],[],[]) = []
| zip3 ((h1::t1),(h2::t2),(h3::t3)) = ((h1,h2,h3)::zip3(t1,t2,t3))
| zip3 _ = raise mk_HOL_ERR "Lib" "zip3" "lists of different length"
infix 8 $
fun op $ (f,x) = f x
fun pad_to sz str =
CharVector.tabulate(Int.max(0,sz-String.size str),K #" ")^str
val sum = foldl (op+) 0
fun println s = print (strcat s "\n");
(* -- *)
(* TODO: move to listLib (and move MAP3 to listTheory) *)
val (map3_tm,mk_map3,dest_map3,is_map3) = syntax_fns4 "misc" "MAP3"
local
val (m3n,m3c) = CONJ_PAIR MAP3_def
val m3c = CONV_RULE(RESORT_FORALL_CONV(sort_vars["f","h1","h2","h3","t1","t2","t3"])) m3c
in
fun MAP3_CONV conv tm =
let
val (fnn,l1,l2,l3) = dest_map3 tm
val (els1,_) = listSyntax.dest_list l1
val (els2,_) = listSyntax.dest_list l2
val (els3,_) = listSyntax.dest_list l3
val nth = ISPEC fnn m3n
val cth = ISPEC fnn m3c
val cns = rator(rator(rand(snd(strip_forall(concl cth)))))
fun APcons t1 t2 = MK_COMB(AP_TERM cns t2,t1)
fun itfn e1 e2 e3 th =
let
val ts = tl(#2(strip_comb(rand(rator(concl th)))))
val es = [e1,e2,e3]
val th1 = SPECL ts (SPECL es cth)
in
TRANS th1 (APcons th (conv (list_mk_comb(fnn,es))))
end
in
itlist3 itfn els1 els2 els3 nth
end
end
(* -- *)
(* parlist num_threads chunk_size eval_fn ls :
evaluate (eval_fn i n x) on each element x of list ls
- using num_threads threads
- each working on chunks of ls of size up to chunk_size
- where i = chunk index, and n = index within chunk, for x
- returns the list of results in reverse order
Uses Poly/ML's Thread structure, so not portable.
Replace with a portable parallel map (does it exist)?
*)
local
open Thread
fun chunks_of n ls =
let
val (ch,rst) = split_after n ls
in
if null rst then [ch]
else ch::(chunks_of n rst)
end handle HOL_ERR _ => [ls]
in
fun parlist num_threads chunk_size eval_fn ls =
let
val num_items = List.length ls
val chs = chunks_of chunk_size ls
val num_chunks = List.length chs
fun eval_chunk i n [] acc = acc
| eval_chunk i n (x::xs) acc =
eval_chunk i (n+1) xs (eval_fn i n x::acc)
val mutex = Mutex.mutex()
val refs = List.tabulate(num_chunks,(fn _ => ref NONE))
val threads_left = ref num_threads
val threads_left_mutex = Mutex.mutex()
val cvar = ConditionVar.conditionVar()
fun find_work i [] [] =
let
val () = Mutex.lock threads_left_mutex
val () = threads_left := !threads_left-1
val () = Mutex.unlock threads_left_mutex
in ConditionVar.signal cvar end
| find_work i (r::rs) (c::cs) =
(case (Mutex.lock mutex; !r) of
SOME _ => (Mutex.unlock mutex; find_work (i+1) rs cs)
| NONE =>
let
val () = r := SOME []
val () = Mutex.unlock mutex
val vs = eval_chunk i 0 c []
val () = r := SOME vs
in
find_work (i+1) rs cs
end)
| find_work _ _ _ =
raise mk_HOL_ERR "Lib" "parlist" "lists of different length"
fun fork_this () = find_work 0 refs chs
val _ = Mutex.trylock threads_left_mutex orelse raise General.Bind
val () = for_se 1 num_threads
(fn _ => ignore (Thread.fork (fork_this, [Thread.EnableBroadcastInterrupt true])))
fun wait () =
if !threads_left = 0 then Mutex.unlock threads_left_mutex
else (ConditionVar.wait(cvar,threads_left_mutex); wait())
val () = wait()
in
List.concat (List.map (Option.valOf o op!) (List.rev refs))
end
end
(* map_ths_conv
[|- f xn = vn, ..., |- f x1 = v1]
``MAP f [x1; ...; xn]``
produces
|- MAP f [x1; ...; xn] = [v1; ...; vn]
*)
fun map_ths_conv ths =
let
val next_thm = ref ths
fun el_conv _ =
case !next_thm of
th :: rest => let val () = next_thm := rest in th end
| _ => raise mk_HOL_ERR "preamble" "map_ths_conv" ""
in
listLib.MAP_CONV el_conv
end
val rconc = rhs o concl;
local
val pad = pad_to 30
in
fun time_with_size size_fn name eval_fn x =
let
val () = Lib.say(pad (name^" eval: "))
val (timer,real_timer) = (start_time(), start_real_time())
val r = eval_fn x
val () = end_time timer
val () = Lib.say(String.concat[pad (name^" real: "),
Lib.time_to_string(Timer.checkRealTimer real_timer),"\n"])
val z = size_fn r
val () = Lib.say(String.concat[pad (name^" size: "),Int.toString z,"\n"])
in r end
end
fun thms_size ls = sum (map (term_size o rconc) ls)
fun timez x y = time_with_size (term_size o rconc) x y
fun mk_abbrev_name s = String.concat[s,!Defn.def_suffix]
fun mk_abbrev s tm =
new_definition(mk_abbrev_name s,
mk_eq(mk_var(s,type_of tm),tm))
fun make_abbrevs str n [] acc = acc
| make_abbrevs str n (t::ts) acc =
make_abbrevs str (n-1) ts
(mk_abbrev (str^(Int.toString n)) t :: acc)
fun intro_abbrev [] tm = raise UNCHANGED
| intro_abbrev (ab::abbs) tm =
FORK_CONV(REWR_CONV(SYM ab),intro_abbrev abbs) tm
fun Abbrev_intro th =
EQ_MP (SYM(SPEC(concl th)markerTheory.Abbrev_def)) th
val preamble_ERR = mk_HOL_ERR"preamble"
fun subterm f = partial(preamble_ERR"subterm""not found") (bvk_find_term (K true) f)
fun any_match_mp impth th =
let
val h = impth |> concl |> strip_forall |>snd |> dest_imp |> fst |>strip_conj
val c = first(can (C match_term (concl th))) h
val th2 = impth
|> CONV_RULE (STRIP_QUANT_CONV(LAND_CONV(move_conj_left (aconv c))))
|> ONCE_REWRITE_RULE[GSYM AND_IMP_INTRO]
in
MATCH_MP th2 th end
val SWAP_IMP = let
val P = mk_var("P", bool)
val Q = mk_var("Q", bool)
val R = mk_var("R", bool)
in
Feedback.trace ("meson", 0) (PROVE[])
(mk_imp(list_mk_imp([P,Q], R), list_mk_imp([Q,P], R)))
end
fun prove_hyps_by tac th = foldr (uncurry PROVE_HYP) th (map (fn h => prove(h,tac)) (hyp th));
(* if the first conjunct under the goal's existential prefix matches the term
except for some places where it has structure and the term just has variables,
then pair split all those variables *)
fun split_pair_match tm (g as (_,w)) =
let
val (vs,b) = strip_exists w
val cs = strip_conj b val c = hd cs
val cs = op::(strip_comb c)
val ts = op::(strip_comb tm)
val ss = map2 (total o match_term) ts cs
val vs = map ((fn x => map #redex (Option.valOf x) handle _ => []) o
(Option.map fst)) ss
val vs = flatten vs
val _ = assert(List.all (fn (x,y) => not (is_const x) orelse isSome y)) (zip cs ss)
in
map_every (TRY o PairCases_on) (map (C cons [] o ANTIQUOTE) vs)
end g
(* the theorem is of the form [!x1 .. xn. P] and the goal contains a subterm
[f v1 .. vn]. apply ttac to [P[vi/xi]]. *)
fun specl_args_of_then f th (ttac:thm_tactic) (g as (_,w)) =
let
val t = find_term (same_const f o fst o strip_comb) w
val (_,vs) = strip_comb t
in
ttac (ISPECL vs th)
end g
(* TODO: all the following might not be used? *)
(* the theorem is of the form [!x1 ... xn. P ==> ?y1 ... ym. Q /\ ...]
the goal is of the form [?z1 ... zk. Q' /\ ...]
instantiate the xs as necessary to make Q and Q' match as much as possible
(complete match impossible if some of Q's variables are the ys) *)
fun exists_match_mp_then (ttac:thm_tactic) th (g as (_,w)) =
let
val (ws,b) = strip_exists w
val cs = strip_conj b val c = hd cs
val (vs,t) = strip_forall (concl th)
val vs = map (fst o dest_var o variant (free_vars b)) vs
val th = CONV_RULE (RENAME_VARS_CONV vs) th
val (vs,t) = strip_forall (concl th)
val (_,b) = dest_imp t
val (_,b) = strip_exists b
val ts = strip_conj b val t = hd ts
val (tms,_) = match_term t c
val tms = filter (C (op_mem aconv) vs o #redex) tms
val tms = filter (not o C (op_mem aconv) ws o #residue) tms
val xs = map #redex tms
val ys = map #residue tms
fun sorter ls = xs@(filter (not o C (op_mem aconv) xs) ls)
val th = SPECL ys (CONV_RULE (RESORT_FORALL_CONV sorter) th)
in
ttac th
end g
(* the theorem is of the form [!x1..n. P ==> Q]
the goal is of the form [?y1..n. Q' /\ ...]
replace the goal with [?y1..n. P /\ ...] by
making the Q and Q' match *)
fun exists_suff_tac th (g as (_,w)) =
let
val (ws,b) = strip_exists w
val bs = strip_conj b
val th = GEN_ALL(PART_MATCH (snd o dest_imp) th (hd bs))
val (vs,c) = strip_forall (concl th)
val (b',_) = dest_imp c
in
suff_tac(list_mk_exists(ws,list_mk_conj(b'::tl bs))) >- metis_tac[th]
end g
(* the theorem is of the form [!x1..n. P ==> ?y1..m. Q /\ A]
the goal is of the form [?z1..k. Q' /\ B]
specialise the theorem to make Q and Q' match as much as possible then
regeneralise then apply the theorem tactic *)
fun exists_suff_gen_then ttac th (g as (_,w)) =
let
val (ws,b) = strip_exists w
val bs = strip_conj b
val th = (GEN_ALL(PART_MATCH (hd o strip_conj o snd o strip_exists o snd o dest_imp) th (hd bs)))
in ttac th end g
(* the theorem is of the form [!x1..n. P ==> ?y1..m. Q /\ A]
the goal is of the form [?z1..k. Q' /\ B]
specialise the theorem to make Q and Q' match as much as possible then
apply the theorem tactic *)
fun exists_suff_then ttac th (g as (_,w)) =
let
val (ws,b) = strip_exists w
val bs = strip_conj b
val th = (PART_MATCH (hd o strip_conj o snd o strip_exists o snd o dest_imp) th (hd bs))
in ttac th end g
fun loseC c =
first_x_assum
(K ALL_TAC o assert (can (find_term (same_const c)) o concl))
val kill_asm_guard =
disch_then (fn th => SUBGOAL_THEN (lhand (concl th))
(MP_TAC o MATCH_MP th)) >- simp[]
fun qispl_then [] ttac = ttac
| qispl_then (q::qs) ttac = Q.ISPEC_THEN q (qispl_then qs ttac)
fun qxchl [] ttac = ttac
| qxchl (q::qs) ttac = Q.X_CHOOSE_THEN q (qxchl qs ttac)
val rveq = rpt BasicProvers.VAR_EQ_TAC
fun erule k th = let
fun c th = let
val (vs, body) = strip_forall (concl th)
in
if is_imp body then
first_assum (c o MATCH_MP th) ORELSE
first_assum (c o MATCH_MP th o SYM)
else k th
end
fun is_resolvable th = let
val (vs, body) = strip_forall (concl th)
in
is_imp body
end
in
if is_resolvable th then c th else NO_TAC
end
fun print_tac s (g as (asl,w)) = let
fun mmlnt_test t = is_const t andalso type_of t = ``:MMLnonT``
in
case get_first (Lib.total (find_term mmlnt_test)) asl of
NONE => raise Fail "No MMLnonT in goal"
| SOME t => if term_to_string t = s then
(print ("print_tac: "^s^"\n"); ALL_TAC g)
else raise Fail ("MMLnonT not "^s)
end
fun simple_match_mp th1 th2 = let
val (x,y) = dest_imp (concl th1)
val (i,t) = match_term x (concl th2)
in MP (INST i (INST_TYPE t th1)) th2 end
(* ========================================================================= *)
(* Execute processes on Posix systems and read results from stdout. *)
(* *)
(* The implementation is modeled after that of the Unix struct in the PolyML *)
(* implementation of the SML basis library. *)
(* ========================================================================= *)
fun read_process (cmd, args, dir) =
let
open Unix
open OS
fun search_paths t [] = NONE
| search_paths t (p::ps) =
let
val cmd = Path.concat (p, t)
in
if FileSys.access (cmd, [FileSys.A_READ, FileSys.A_EXEC]) then
SOME cmd
else
search_paths t ps
end
fun get_cmd t =
case Process.getEnv "PATH" of
NONE => search_paths t ["."]
| SOME path =>
let
val paths = String.tokens (fn c => c = #":") path
in
search_paths t paths
end
val old_pwd = FileSys.getDir ()
val _ =
case dir of
NONE => ()
| SOME d => FileSys.chDir d
in
case get_cmd cmd of
NONE => NONE
| SOME cmd =>
let
val proc = execute (cmd, args)
val outp = TextIO.inputAll (textInstreamOf proc)
val str = String.substring (outp, 0, String.size outp - 1)
in
if Option.isSome dir then FileSys.chDir old_pwd else ();
if Process.isSuccess (reap proc) then SOME str else NONE
end
end
handle _ => NONE
(* Run an external process and get its stdout as a string option term *)
fun tm_from_proc cmd args =
case read_process (cmd, args, NONE) of
NONE => Term `NONE : string option`
| SOME s => Term `SOME ^(stringSyntax.fromMLstring s)`
fun tm_from_proc_from dir cmd args =
case read_process (cmd, args, SOME dir) of
NONE => Term `NONE : string option`
| SOME s => Term `SOME ^(stringSyntax.fromMLstring s)`
(* Run an external process and get its stdout as a mlstring option term *)
fun mlstring_from_proc cmd args =
case read_process (cmd, args, NONE) of
NONE => Term `NONE : mlstring option`
| SOME s => Term `SOME (strlit ^(stringSyntax.fromMLstring s))`
(* ========================================================================= *)
(* ========================================================================= *)
local
open stringLib Boolconv ListConv1 pred_setLib;
val [ALL_DISTINCT_NIL,ALL_DISTINCT_CONS] = ALL_DISTINCT |> CONJUNCTS
val [MEM_NIL,MEM_CONS] = MEM |> CONJUNCTS
val [FLAT_NIL,FLAT_CONS] = FLAT |> CONJUNCTS
val [MAP_NIL,MAP_CONS] = MAP |> CONJUNCTS
val [APPEND_NIL_LEFT,APPEND_CONS] = APPEND |> CONJUNCTS
val APPEND_NIL_RIGHT = APPEND_NIL |> CONJUNCTS |> hd
val [set_nil,set_cons] = LIST_TO_SET |> CONJUNCTS
in
(* TODO: move to listLib, consolidate with IS_EL_CONV *)
fun mem_conv eq_conv tm =
tm |> (
REWR_CONV MEM_NIL
ORELSEC
(REWR_CONV MEM_CONS
THENC RATOR_CONV(RAND_CONV(eq_conv))
THENC OR_CONV
THENC (fn tm => if Teq tm then ALL_CONV tm else mem_conv eq_conv tm))
)
(* TODO: move to listLib, cf. Z3ProofReplay.ALL_DISTINCT_CONV *)
fun all_distinct_conv eq_conv tm =
tm |> (
REWR_CONV ALL_DISTINCT_NIL
ORELSEC
(REWR_CONV ALL_DISTINCT_CONS
THENC RATOR_CONV(RAND_CONV(RAND_CONV(mem_conv eq_conv)))
THENC RATOR_CONV(RAND_CONV(NOT_CONV))
THENC AND_CONV
THENC (fn tm => if Feq tm then ALL_CONV tm else all_distinct_conv eq_conv tm)
)
)
val all_distinct_string_conv = all_distinct_conv string_EQ_CONV
val all_distinct_list_string_conv = all_distinct_conv (list_EQ_CONV string_EQ_CONV)
fun set_conv tm =
tm |>
(
REWR_CONV set_nil
ORELSEC
(REWR_CONV set_cons THENC RAND_CONV set_conv)
)
end
local
fun BRING_NAME_TO_FRONT_CONV n t =
let val (vs, b) = strip_forall t
in
case vs of
[] => NO_CONV
| v::rest => if #1 (dest_var v) = n then ALL_CONV
else BINDER_CONV (BRING_NAME_TO_FRONT_CONV n) THENC
SWAP_VARS_CONV
end t
fun SPECtop th =
let val (v, _) = dest_forall (concl th)
in
SPEC v th
end
fun SPECnames [] th = th
| SPECnames (n::ns) th =
case Lib.total (CONV_RULE (BRING_NAME_TO_FRONT_CONV n)) th of
NONE => SPECnames ns th
| SOME th' => SPECnames ns (SPECtop th')
fun specnames_then fvnms ttac th = ttac (SPECnames fvnms th)
in
fun old_drule_then ttac th =
let val fvnames = map (#1 o dest_var) (th |> concl |> free_vars)
in
drule_then (specnames_then fvnames ttac) th
end
val old_drule = old_drule_then mp_tac
fun old_dxrule_then ttac th =
let val fvnames = map (#1 o dest_var) (th |> concl |> free_vars)
in
dxrule_then (specnames_then fvnames ttac) th
end
val old_dxrule = old_dxrule_then mp_tac
end
end