-
Notifications
You must be signed in to change notification settings - Fork 85
/
loopPropsScript.sml
1256 lines (1194 loc) · 42.6 KB
/
loopPropsScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Properties of loopLang and loopSem
*)
open preamble
loopLangTheory loopSemTheory
pan_commonTheory pan_commonPropsTheory;
local open wordSemTheory in end;
val _ = new_theory"loopProps";
val _ = set_grammar_ancestry ["loopSem", "pan_commonProps"];
Definition every_prog_def:
(every_prog p (Seq p1 p2) <=>
p (Seq p1 p2) /\ every_prog p p1 /\ every_prog p p2) /\
(every_prog p (Loop l1 body l2) <=>
p (Loop l1 body l2) /\ every_prog p body) /\
(every_prog p (If x1 x2 x3 p1 p2 l1) <=>
p (If x1 x2 x3 p1 p2 l1) /\ every_prog p p1 /\ every_prog p p2) /\
(every_prog p (Mark p1) <=>
p (Mark p1) /\ every_prog p p1) /\
(every_prog p (Call ret dest args handler) <=>
p (Call ret dest args handler) /\
(case handler of SOME (n,q,r,l) => every_prog p q ∧ every_prog p r | NONE => T)) /\
(every_prog p prog <=> p prog)
End
Definition no_Loop_def:
no_Loop = every_prog (\q. !l1 x l2. q <> Loop l1 x l2)
End
Definition no_Loops_def:
no_Loops p ⇔ no_Loop p ∧ every_prog (\r. r ≠ Break ∧ r ≠ Continue) p
End
Definition syntax_ok_def: (* syntax expected by loop_remove *)
(syntax_ok (Seq p1 p2) <=>
~(no_Loop (Seq p1 p2)) ∧ syntax_ok p1 /\ syntax_ok p2) /\
(syntax_ok (Loop l1 body l2) <=>
syntax_ok body) /\
(syntax_ok (If x1 x2 x3 p1 p2 l1) <=>
~(no_Loop (If x1 x2 x3 p1 p2 l1)) ∧ syntax_ok p1 /\ syntax_ok p2) /\
(syntax_ok (Mark p1) <=>
no_Loop p1) /\
(syntax_ok (Call ret dest args handler) <=>
~(no_Loop (Call ret dest args handler)) ∧
(case handler of SOME (n,q,r,l) => syntax_ok q ∧ syntax_ok r | NONE => F)) /\
(syntax_ok prog <=> F)
End
Definition survives_def:
(survives n (If c r ri p q cs) <=>
survives n p ∧ survives n q ∧ n ∈ domain cs) ∧
(survives n (Loop il p ol) <=>
n ∈ domain il ∧ n ∈ domain ol ∧ survives n p) ∧
(survives n (Call (SOME (m,cs)) trgt args NONE) <=>
n ∈ domain cs) ∧
(survives n (Call (SOME (m,cs)) trgt args (SOME (r,p,q,ps))) <=>
n ∈ domain cs ∧ n ∈ domain ps ∧ survives n p ∧ survives n q) ∧
(survives n (FFI fi ptr1 len1 ptr2 len2 cs) <=> n ∈ domain cs) ∧
(survives n (Mark p) <=> survives n p) ∧
(survives n (Seq p q) <=> survives n p ∧ survives n q) ∧
(survives n p <=> T)
End
Definition cut_sets_def:
(cut_sets l Skip = l) ∧
(cut_sets l (LocValue n m) = insert n () l) ∧
(cut_sets l (Assign n e) = insert n () l) ∧
(cut_sets l (LoadByte n m) = insert m () l) ∧
(cut_sets l (Seq p q) = cut_sets (cut_sets l p) q) ∧
(cut_sets l (If _ _ _ p q nl) = nl) ∧
(cut_sets l (Arith arith) =
case arith of
LLongDiv r1 r2 _ _ _ => insert r1 () $ insert r2 () l
| LLongMul r1 r2 _ _ => insert r1 () $ insert r2 () l
| LDiv r1 _ _ => insert r1 () l
) ∧
(cut_sets l _ = l)
End
Definition comp_syntax_ok_def:
(comp_syntax_ok l loopLang$Skip = T) ∧
(comp_syntax_ok l (Assign n e) = T) ∧
(comp_syntax_ok l (Loop lin p lout) = (l = lin ∧ l = lout ∧ comp_syntax_ok lin p)) ∧
(comp_syntax_ok l (Arith arith) = T) ∧
(comp_syntax_ok l Break = T) ∧
(comp_syntax_ok l (LocValue n m) = T) ∧
(comp_syntax_ok l (LoadByte n m) = T) ∧
(comp_syntax_ok l (Seq p q) = (comp_syntax_ok l p ∧ comp_syntax_ok (cut_sets l p) q)) ∧
(comp_syntax_ok l (If c n r p q nl) =
(comp_syntax_ok l p ∧ comp_syntax_ok l q ∧
∃ns. nl = FOLDL (λsp n. insert n () sp) l ns))
∧
(comp_syntax_ok _ _ = F)
End
Theorem evaluate_tail_calls_eqs:
!f t lc x. find_code (SOME f) ([]:'a word_loc list) t.code = SOME x ==>
evaluate ((Call NONE (SOME f) [] NONE): 'a loopLang$prog, t) =
evaluate (Call NONE (SOME f) [] NONE, t with locals := lc)
Proof
rw [] >>
fs [evaluate_def] >>
TOP_CASE_TAC >> fs [get_vars_def] >> rveq >>
fs [] >>
TOP_CASE_TAC >> fs [] >>
TOP_CASE_TAC >> fs [] >>
fs [dec_clock_def]
QED
Theorem acc_vars_acc:
∀p l.
domain (acc_vars p l) = domain (acc_vars p LN) ∪ domain l
Proof
qsuff_tac ‘∀p (l:num_set) l.
domain (acc_vars p l) = domain (acc_vars p LN) UNION domain l’
>- metis_tac [] >>
ho_match_mp_tac acc_vars_ind >> rw [] >> fs [] >>
ntac 4 (once_asm_rewrite_tac [acc_vars_def]) >>
simp_tac (srw_ss()) [domain_def,AC UNION_COMM UNION_ASSOC,domain_union,
domain_insert,LET_THM] >>
every_case_tac
>~ [‘domain (acc_vars _ _) = domain _ ∪ domain(acc_vars _ _)’] >-
(rpt (pop_assum (fn th => mp_tac (SIMP_RULE std_ss [] th))) >>
rewrite_tac [AND_IMP_INTRO] >>
disch_then (fn th => ntac 6 (once_rewrite_tac [th])) >>
simp_tac (srw_ss()) [domain_def,AC UNION_COMM UNION_ASSOC,domain_union,
domain_insert,LET_THM] >>
fs [EXTENSION] >> metis_tac []) >>
rw[SET_EQ_SUBSET,SUBSET_DEF] >> rw[]
QED
Theorem evaluate_Loop_body_same:
(∀(s:('a,'b)state). evaluate (body,s) = evaluate (body',s)) ⇒
∀(s:('a,'b)state). evaluate (Loop l1 body l2,s) = evaluate (Loop l1 body' l2,s)
Proof
rw [] \\ completeInduct_on ‘s.clock’
\\ rw [] \\ fs [PULL_EXISTS,PULL_FORALL]
\\ once_rewrite_tac [evaluate_def]
\\ TOP_CASE_TAC \\ fs []
\\ TOP_CASE_TAC \\ fs []
\\ TOP_CASE_TAC \\ fs []
\\ TOP_CASE_TAC \\ fs []
\\ TOP_CASE_TAC \\ fs []
\\ first_x_assum match_mp_tac
\\ fs [cut_res_def,CaseEq"option",CaseEq"bool",cut_state_def]
\\ rveq \\ fs [dec_clock_def]
\\ imp_res_tac evaluate_clock \\ fs [dec_clock_def]
QED
Theorem evaluate_no_Break_Continue:
∀prog s res t.
evaluate (prog, s) = (res,t) ∧
every_prog (\r. r ≠ Break ∧ r ≠ Continue) prog ⇒
res ≠ SOME Break ∧ res ≠ SOME Continue
Proof
recInduct evaluate_ind \\ fs [] \\ rpt conj_tac \\ rpt gen_tac \\ strip_tac
\\ (rename [‘Loop’] ORELSE
(fs [evaluate_def,CaseEq"option",CaseEq"word_loc",CaseEq"bool",CaseEq"ffi_result"]
\\ rveq \\ fs []))
\\ rpt gen_tac \\ TRY strip_tac
\\ rpt (pairarg_tac \\ fs [])
\\ fs [every_prog_def]
\\ fs [CaseEq"bool"] \\ rveq \\ fs []
THEN1
(Cases_on ‘word_cmp cmp x y’ \\ fs []
\\ rename [‘evaluate (xx,s)’] \\ Cases_on ‘evaluate (xx,s)’ \\ fs []
\\ Cases_on ‘x’ \\ fs [cut_res_def,CaseEq"option",CaseEq"bool"] \\ rveq \\ fs [])
THEN1
(qpat_x_assum ‘evaluate _ = _’ mp_tac
\\ once_rewrite_tac [evaluate_def]
\\ TOP_CASE_TAC \\ fs []
\\ reverse TOP_CASE_TAC \\ fs []
\\ fs [cut_res_def,CaseEq"option",CaseEq"bool",cut_state_def] \\ rveq \\ fs []
\\ rw [] \\ fs [CaseEq"option",CaseEq"bool",CaseEq"prod",CaseEq"result"]
\\ rveq \\ fs [])
\\ fs [CaseEq"prod",CaseEq"option"] \\ rveq \\ fs [] >>
TRY
(Cases_on ‘op’>>fs[sh_mem_op_def,sh_mem_store_def,sh_mem_load_def]>>
every_case_tac>>fs[] \\ rveq \\ fs [])
THEN1
(fs [CaseEq"bool"] \\ rveq \\ fs []
\\ fs [CaseEq"bool",CaseEq"prod",CaseEq"result",CaseEq"option"] \\ rveq \\ fs [])
\\ fs [CaseEq"bool",CaseEq"prod",CaseEq"result",CaseEq"option",cut_res_def]
\\ rveq \\ fs [] \\ rename [‘cut_res _ xx’] \\ Cases_on ‘xx’ \\ fs []
\\ fs [CaseEq"bool",CaseEq"prod",CaseEq"result",CaseEq"option",cut_res_def]
\\ rveq \\ fs []
QED
Theorem locals_touched_eq_eval_eq:
!s e t.
s.globals = t.globals /\ s.memory = t.memory /\ s.mdomain = t.mdomain /\
s.base_addr = t.base_addr ∧
(!n. MEM n (locals_touched e) ==> lookup n s.locals = lookup n t.locals) ==>
eval t e = eval s e
Proof
ho_match_mp_tac eval_ind >> rw [] >>
gvs[locals_touched_def,MEM_FLAT,MEM_MAP,PULL_EXISTS,eval_def,mem_load_def] >>
ntac 2 AP_THM_TAC >> ntac 2 AP_TERM_TAC >>
match_mp_tac MAP_CONG >>
rw[] >>
first_x_assum $ match_mp_tac o MP_CANON >>
rw[] >> res_tac
QED
Theorem loop_eval_nested_assign_distinct_eq:
!es ns t ev.
MAP (eval t) es = MAP SOME ev /\
distinct_lists ns (FLAT (MAP locals_touched es)) /\
ALL_DISTINCT ns /\
LENGTH ns = LENGTH es ==>
evaluate (nested_seq (MAP2 Assign ns es),t) =
(NONE, t with locals := (alist_insert ns ev t.locals))
Proof
Induct
>- (
rpt gen_tac >> strip_tac >>
cases_on ‘ns’ >> fs [] >>
fs [nested_seq_def, evaluate_def,
alist_insert_def,
state_component_equality]) >>
rpt gen_tac >>
strip_tac >>
cases_on ‘ns’ >>
fs [nested_seq_def] >>
fs [evaluate_def] >>
pairarg_tac >> fs [] >>
fs [MAP_EQ_CONS] >>
rveq >> rfs [] >>
fs [OPT_MMAP_def] >>
rveq >> rfs [] >>
rveq >>
rename [‘eval t e = SOME v’] >>
rename [‘MAP (eval t) es = MAP SOME ev’] >>
fs [alist_insert_def] >>
‘MAP (eval (set_var h' v t)) es = MAP SOME ev’ by (
fs [MAP_EQ_EVERY2, LIST_REL_EL_EQN] >>
rw [] >>
first_x_assum (qspec_then ‘n’ assume_tac) >>
rfs [] >>
‘eval (set_var h' v t) (EL n es) = eval t (EL n es)’
suffices_by fs [] >>
match_mp_tac locals_touched_eq_eval_eq >>
fs [set_var_def] >>
rw [] >>
fs [distinct_lists_def, lookup_insert] >>
TOP_CASE_TAC >> fs [] >> rveq >>
metis_tac [MEM_FLAT, EL_MEM, MEM_MAP]) >>
fs [] >>
last_x_assum drule >>
disch_then (qspec_then ‘t'’ mp_tac) >>
fs [] >>
impl_tac
>- (
ho_match_mp_tac (GEN_ALL distinct_lists_cons) >>
qexists_tac ‘locals_touched e’ >>
qexists_tac ‘[h']’ >>
fs []) >>
strip_tac >>
fs [set_var_def] >>
drule (INST_TYPE [``:'a``|->``:'a word_loc``]
alist_insert_pull_insert) >>
disch_then (qspecl_then [‘v’, ‘ev’, ‘t.locals’] mp_tac) >>
fs []
QED
Theorem get_var_imm_add_clk_eq:
get_var_imm ri (s with clock := ck) =
get_var_imm ri s
Proof
rw [] >>
cases_on ‘ri’ >> fs [get_var_imm_def]
QED
Theorem get_vars_local_clock_upd_eq:
!ns st l ck.
get_vars ns (st with <|locals := l; clock := ck|>) =
get_vars ns (st with locals := l)
Proof
Induct >> rw [] >>
fs [get_vars_def]
QED
Theorem get_vars_clock_upd_eq:
!ns st l ck.
get_vars ns (st with clock := ck) =
get_vars ns st
Proof
Induct >> rw [] >>
fs [get_vars_def]
QED
Theorem get_vars_local_update_some_eq:
!ns vs st.
ALL_DISTINCT ns /\ LENGTH ns = LENGTH vs ==>
get_vars ns (st with locals := alist_insert ns vs st.locals) = SOME vs
Proof
Induct >> rw [] >>
fs [get_vars_def] >>
cases_on ‘vs’ >>
fs [alist_insert_def] >>
first_x_assum (qspecl_then
[‘t’, ‘st with locals := insert h h' st.locals’] mp_tac) >>
fs [] >> strip_tac >>
qsuff_tac ‘alist_insert ns t (insert h h' st.locals) =
insert h h' (alist_insert ns t st.locals)’
>- (strip_tac >> fs []) >>
ho_match_mp_tac alist_insert_pull_insert >>
fs []
QED
Theorem unassigned_vars_evaluate_same:
!p s res t n v.
evaluate (p,s) = (res,t) /\
(res = NONE ∨ res = SOME Continue ∨ res = SOME Break) /\
lookup n s.locals = SOME v /\
~MEM n (assigned_vars p) /\ survives n p ==>
lookup n t.locals = lookup n s.locals
Proof
recInduct evaluate_ind >>
rpt conj_tac >> rpt gen_tac
>~ [‘Mark’] >-
(rw [] >>
fs [Once evaluate_def, AllCaseEqs(), assigned_vars_def,
survives_def])
>~ [‘FFI’] >-
(rw [] >>
fs [Once evaluate_def,AllCaseEqs(), assigned_vars_def, survives_def] >>
rveq >> fs [cut_state_def] >> rveq >>
fs [lookup_inter,AllCaseEqs(), domain_lookup])
>~ [‘Seq’] >-
(rw [] >>
fs [Once evaluate_def,AllCaseEqs(), assigned_vars_def,
survives_def] >>
pairarg_tac >> fs [AllCaseEqs()] >> rveq >>
res_tac >> fs [])
>~ [‘If’] >-
(rw [] >>
fs [Once evaluate_def, AllCaseEqs(), assigned_vars_def,
survives_def] >> rveq >>
FULL_CASE_TAC >> fs [] >>
rename [‘cut_res _ (evaluate (c1,s))’] >>
cases_on ‘evaluate (c1,s)’ >> fs [] >>
cases_on ‘q’ >> fs [cut_res_def, AllCaseEqs(), dec_clock_def, cut_state_def] >>
rveq >> fs [lookup_inter, AllCaseEqs()] >>
res_tac >> rfs [domain_lookup])
>~ [‘Loop’] >-
(rpt strip_tac >>
qpat_x_assum ‘evaluate (Loop _ _ _,_) = _’ mp_tac >>
once_rewrite_tac [evaluate_def] >>
rewrite_tac [cut_res_def, cut_state_def, dec_clock_def] >>
reverse (cases_on ‘domain live_in ⊆ domain s.locals’)
>- rw [] >>
rw [] >>
FULL_CASE_TAC >>
cases_on ‘q’ >> fs [] >>
fs [Once cut_res_def, cut_state_def] >>
fs [survives_def, assigned_vars_def, dec_clock_def] >>
fs [AllCaseEqs()] >> rveq >> fs [] >>
res_tac >> rfs [lookup_inter, AllCaseEqs(), domain_lookup])
>~ [‘Call’] >-
(rpt strip_tac
>- (
(* NONE result *)
qpat_x_assum ‘evaluate (Call _ _ _ _,_) = _’ mp_tac >>
once_rewrite_tac [evaluate_def] >>
rpt TOP_CASE_TAC
>- (
strip_tac >>
rfs [] >> rveq >>
fs [assigned_vars_def, survives_def, set_var_def, cut_res_def,
dec_clock_def, cut_state_def, AllCaseEqs(), lookup_insert] >>
rveq >> fs [lookup_inter, AllCaseEqs(), domain_lookup])
>- (
pop_assum kall_tac >>
pop_assum mp_tac >>
pop_assum kall_tac >>
strip_tac >>
rfs [] >> rveq >>
fs [assigned_vars_def, survives_def, set_var_def, cut_res_def,
dec_clock_def, cut_state_def, AllCaseEqs(), lookup_insert] >>
rveq >> fs [lookup_inter, AllCaseEqs(), domain_lookup] >>
qmatch_goalsub_abbrev_tac ‘cut_res nr (evaluate (rq,ar)) = _’ >>
cases_on ‘evaluate (rq, ar)’ >>
qmatch_asmsub_rename_tac ‘ evaluate _ = (tq,tr)’ >>
strip_tac >> cases_on ‘tq’ >>
fs [cut_res_def, cut_state_def, dec_clock_def,
AllCaseEqs()] >> rveq >>
fs [] >>
unabbrev_all_tac >> fs [] >>
qsuff_tac ‘lookup n tr.locals = SOME v’
>- (strip_tac >> fs [lookup_inter]) >>
first_x_assum match_mp_tac >>
fs []) >>
pop_assum mp_tac >>
pop_assum kall_tac >>
pop_assum kall_tac >>
strip_tac >>
rfs [] >> rveq >>
fs [assigned_vars_def, survives_def, set_var_def, cut_res_def,
dec_clock_def, cut_state_def, AllCaseEqs(), lookup_insert] >>
rveq >> fs [lookup_inter, AllCaseEqs(), domain_lookup] >>
qmatch_goalsub_abbrev_tac ‘cut_res nr (evaluate (rq,ar)) = _’ >>
cases_on ‘evaluate (rq, ar)’ >>
qmatch_asmsub_rename_tac ‘ evaluate _ = (tq,tr)’ >>
strip_tac >> cases_on ‘tq’ >>
fs [cut_res_def, cut_state_def, dec_clock_def,
AllCaseEqs()] >> rveq >>
fs [] >>
unabbrev_all_tac >> fs [] >>
qsuff_tac ‘lookup n tr.locals = SOME v’
>- (strip_tac >> fs [lookup_inter]) >>
first_x_assum match_mp_tac >>
fs []) >>
(* non-NONE result *)
(qpat_x_assum ‘evaluate (Call _ _ _ _,_) = _’ mp_tac >>
once_rewrite_tac [evaluate_def] >>
rpt TOP_CASE_TAC
>- (
pop_assum kall_tac >>
pop_assum mp_tac >>
pop_assum kall_tac >>
strip_tac >>
rfs [] >> rveq >>
fs [assigned_vars_def, survives_def, set_var_def, cut_res_def,
dec_clock_def, cut_state_def, AllCaseEqs(), lookup_insert] >>
rveq >> fs [lookup_inter, AllCaseEqs(), domain_lookup] >>
qmatch_goalsub_abbrev_tac ‘cut_res nr (evaluate (rq,ar)) = _’ >>
cases_on ‘evaluate (rq, ar)’ >>
qmatch_asmsub_rename_tac ‘ evaluate _ = (tq,tr)’ >>
strip_tac >> cases_on ‘tq’ >>
fs [cut_res_def, cut_state_def, dec_clock_def,
AllCaseEqs()]) >>
pop_assum mp_tac >>
pop_assum kall_tac >>
pop_assum kall_tac >>
strip_tac >>
rfs [] >> rveq >>
fs [assigned_vars_def, survives_def, set_var_def, cut_res_def,
dec_clock_def, cut_state_def, AllCaseEqs(), lookup_insert] >>
rveq >> fs [lookup_inter, AllCaseEqs(), domain_lookup] >>
qmatch_goalsub_abbrev_tac ‘cut_res nr (evaluate (rq,ar)) = _’ >>
cases_on ‘evaluate (rq, ar)’ >>
qmatch_asmsub_rename_tac ‘ evaluate _ = (tq,tr)’ >>
strip_tac >> cases_on ‘tq’ >>
fs [cut_res_def, cut_state_def, dec_clock_def,
AllCaseEqs()]))
>~ [‘Arith arith’] >-
(Cases_on ‘arith’ >>
rw [] >>
fs [Once evaluate_def,AllCaseEqs(), set_var_def, set_globals_def,
dec_clock_def, assigned_vars_def, survives_def,loop_arith_def] >>
rveq >> fs [lookup_insert, mem_store_def, AllCaseEqs()] >>
rveq >> fs [state_component_equality]
)
>~ [‘ShMem’]>-
(Cases_on ‘op’>>rw[]>>
fs [Once evaluate_def,AllCaseEqs(), set_var_def, set_globals_def,
dec_clock_def, assigned_vars_def, survives_def] >>
fs[sh_mem_op_def,sh_mem_store_def,sh_mem_load_def,set_var_def]>>
rveq >> fs [lookup_insert, mem_store_def, AllCaseEqs(),
DefnBase.one_line_ify NONE loop_arith_def] >>
rveq >> fs [state_component_equality,lookup_insert])>>
rw [] >>
fs [Once evaluate_def,AllCaseEqs(), set_var_def, set_globals_def,
dec_clock_def, assigned_vars_def, survives_def] >>
rveq >> fs [lookup_insert, mem_store_def, AllCaseEqs(),
DefnBase.one_line_ify NONE loop_arith_def] >>
rveq >> fs [state_component_equality]
QED
Theorem evaluate_nested_seq_cases:
(!p q s st t.
evaluate (nested_seq (p ++ q), s) = (NONE, t) /\
evaluate (nested_seq p,s) = (NONE,st) ==>
evaluate (nested_seq q,st) = (NONE,t)) /\
(!p s st q.
evaluate (nested_seq p, s) = (NONE, st) ==>
evaluate (nested_seq (p ++ q), s) = evaluate (nested_seq q, st)) /\
(!p s res st q.
evaluate (nested_seq p, s) = (res, st) /\
res <> NONE ==>
evaluate (nested_seq (p ++ q), s) = evaluate (nested_seq p, s))
Proof
rpt conj_tac >>
Induct >> rw []
>- fs [nested_seq_def, evaluate_def] >>
fs [nested_seq_def, evaluate_def] >>
pairarg_tac >> fs [] >>
FULL_CASE_TAC >> fs [] >>
res_tac >> fs []
QED
Theorem survives_nested_seq_intro:
!p q n.
survives n (nested_seq p) /\
survives n (nested_seq q) ==>
survives n (nested_seq (p ++ q))
Proof
Induct >> rw [] >>
fs [nested_seq_def, survives_def]
QED
Theorem nested_assigns_survives:
!xs ys n.
LENGTH xs = LENGTH ys ==>
survives n (nested_seq (MAP2 Assign xs ys))
Proof
Induct >> rw [] >>
TRY (cases_on ‘ys’) >>
fs [nested_seq_def, survives_def]
QED
Theorem comp_syn_ok_seq2:
!l p q. comp_syntax_ok l p /\ comp_syntax_ok (cut_sets l p) q ==>
comp_syntax_ok l (Seq p q)
Proof
rw [] >>
once_rewrite_tac [comp_syntax_ok_def] >>
fs []
QED
Theorem comp_syn_ok_nested_seq:
!p q l. comp_syntax_ok l (nested_seq p) ∧
comp_syntax_ok (cut_sets l (nested_seq p)) (nested_seq q) ==>
comp_syntax_ok l (nested_seq (p ++ q))
Proof
Induct >> rw [] >>
fs [nested_seq_def,cut_sets_def,comp_syntax_ok_def]
QED
Theorem comp_syn_ok_nested_seq2:
!p q l. comp_syntax_ok l (nested_seq (p ++ q)) ==>
comp_syntax_ok l (nested_seq p) ∧
comp_syntax_ok (cut_sets l (nested_seq p)) (nested_seq q)
Proof
Induct >> rw [] >>
fs [nested_seq_def, cut_sets_def,comp_syntax_ok_def] >>
metis_tac[comp_syn_ok_nested_seq]
QED
Theorem cut_sets_nested_seq:
!p q l. cut_sets l (nested_seq (p ++ q)) =
cut_sets (cut_sets l (nested_seq p)) (nested_seq q)
Proof
Induct >> rw [] >>
fs [nested_seq_def]
>- fs [cut_sets_def] >>
fs [cut_sets_def]
QED
Theorem cut_sets_union_accumulate:
∀p l. comp_syntax_ok l p ==> (* need this assumption for the If case *)
∃(l' :sptree$num_set). cut_sets l p = union l l'
Proof
Induct >> rw [] >>
TRY (fs [Once comp_syntax_ok_def] >> NO_TAC) >>
fs [cut_sets_def] >>
TRY (qexists_tac ‘LN’ >> fs [] >> NO_TAC) >>
TRY (
rename [‘insert vn () l’] >>
qexists_tac ‘insert vn () LN’ >>
fs [Once insert_union, union_num_set_sym] >> NO_TAC)
>- (rename1 ‘Arith l’ >> Cases_on ‘l’ >> rw[] >>
simp[Once insert_union,union_num_set_sym] >>
simp[Once insert_union,SimpR “union”, union_num_set_sym] >>
metis_tac[union_num_set_sym,union_assoc])
>- (
gvs[comp_syntax_ok_def] >>
res_tac >>
simp[] >>
metis_tac[union_assoc]) >>
gvs[comp_syntax_ok_def] >>
rpt $ pop_assum kall_tac >>
qid_spec_tac ‘l’ >>
Induct_on ‘ns’ >>
rw[]
>- metis_tac[union_LN] >>
rename1 ‘insert x () sp’ >>
first_x_assum $ qspec_then ‘insert x () sp’ strip_assume_tac >>
rw[] >>
metis_tac[union_num_set_sym,union_assoc,union_insert_LN]
QED
Theorem cut_sets_union_domain_subset:
!p l. comp_syntax_ok l p ==>
domain l ⊆ domain (cut_sets l p)
Proof
rw [] >>
drule cut_sets_union_accumulate >>
strip_tac >> fs [] >>
fs [domain_union]
QED
Theorem cut_sets_union_domain_union:
!p l. comp_syntax_ok l p ==>
?(l' :sptree$num_set). domain (cut_sets l p) = domain l ∪ domain l'
Proof
rw [] >>
drule cut_sets_union_accumulate >>
strip_tac >> fs [] >>
qexists_tac ‘l'’ >>
fs [domain_union]
QED
Theorem comp_syn_impl_cut_sets_subspt:
!p l. comp_syntax_ok l p ==>
subspt l (cut_sets l p)
Proof
rw [] >>
drule cut_sets_union_accumulate >>
strip_tac >>
fs [subspt_union]
QED
Theorem comp_syn_cut_sets_mem_domain:
!p l n .
comp_syntax_ok l p /\ n ∈ domain l ==>
n ∈ domain (cut_sets l p)
Proof
rw [] >>
drule cut_sets_union_domain_union >>
strip_tac >> fs []
QED
Theorem comp_syn_ok_upd_local_clock:
!p s res t l.
evaluate (p,s) = (res,t) /\
comp_syntax_ok l p ==>
t = s with <|locals := t.locals; clock := t.clock|>
Proof
recInduct evaluate_ind >> rw []
>~ [‘Arith’] >-
(gvs[comp_syntax_ok_def,evaluate_def,AllCaseEqs(),
DefnBase.one_line_ify NONE loop_arith_def] >>
simp[state_component_equality,set_var_def])
>~ [‘Loop’] >-
(qpat_x_assum ‘evaluate _ = _’ $ strip_assume_tac o PURE_ONCE_REWRITE_RULE [evaluate_def] >>
gvs[comp_syntax_ok_def,DefnBase.one_line_ify NONE cut_res_def,cut_state_def,
AllCaseEqs(),dec_clock_def] >>
res_tac >> gvs[state_component_equality])
>~ [‘If’] >-
(gvs[comp_syntax_ok_def,Once evaluate_def,DefnBase.one_line_ify NONE cut_res_def,cut_state_def,
AllCaseEqs(),dec_clock_def] >>
simp[state_component_equality] >>
Cases_on ‘word_cmp cmp x y’ >> gvs[] >>
res_tac >> gvs[state_component_equality]) >>
gvs[comp_syntax_ok_def,Once evaluate_def] >>
gvs[AllCaseEqs(),set_var_def] >>
TRY pairarg_tac >> gvs[AllCaseEqs()] >>
res_tac >>
gvs[state_component_equality]
QED
Theorem assigned_vars_nested_seq_split:
!p q.
assigned_vars (nested_seq (p ++ q)) =
assigned_vars (nested_seq p) ++ assigned_vars (nested_seq q)
Proof
Induct >> rw [] >>
fs [nested_seq_def, assigned_vars_def]
QED
Theorem assigned_vars_seq_split:
!q p. assigned_vars (Seq p q) =
assigned_vars p ++ assigned_vars q
Proof
rw [] >> fs [assigned_vars_def, cut_sets_def]
QED
Theorem assigned_vars_nested_assign:
!xs ys.
LENGTH xs = LENGTH ys ==>
assigned_vars (nested_seq (MAP2 Assign xs ys)) = xs
Proof
Induct >> rw [] >>
TRY (cases_on ‘ys’) >>
fs [nested_seq_def, assigned_vars_def]
QED
Theorem comp_syn_ok_lookup_locals_eq:
!p s res t l n.
evaluate (p,s) = (res,t) /\ res <> SOME TimeOut /\
comp_syntax_ok l p /\ n ∈ domain l /\
~MEM n (assigned_vars p) ==>
lookup n t.locals = lookup n s.locals
Proof
recInduct evaluate_ind >> rw []
>~ [‘Arith’] >-
(gvs[evaluate_def,assigned_vars_def,
DefnBase.one_line_ify NONE loop_arith_def,
AllCaseEqs(),set_var_def,lookup_insert
])
>~ [‘Loop’] >-
(qpat_x_assum ‘evaluate _ = _’ $ strip_assume_tac o PURE_ONCE_REWRITE_RULE [evaluate_def] >>
gvs[comp_syntax_ok_def,DefnBase.one_line_ify NONE cut_res_def,cut_state_def,
AllCaseEqs(),dec_clock_def,assigned_vars_def] >>
first_x_assum $ drule_then $ drule_at $ Pos last >>
rw[lookup_inter_alt])
>~ [‘If’] >-
(gvs[comp_syntax_ok_def,Once evaluate_def,DefnBase.one_line_ify NONE cut_res_def,cut_state_def,
AllCaseEqs(),dec_clock_def,assigned_vars_def] >>
Cases_on ‘word_cmp cmp x y’ >>
gvs[] >>
res_tac >>
rw[lookup_inter_alt])
>~ [‘Seq’] >-
(gvs[comp_syntax_ok_def,assigned_vars_def,Once evaluate_def] >>
pairarg_tac >>
gvs[AllCaseEqs()] >>
last_x_assum drule_all >>
rw[] >>
first_x_assum drule >>
disch_then $ drule_at $ Pos last >>
imp_res_tac cut_sets_union_domain_union >>
fs []) >>
gvs[comp_syntax_ok_def,assigned_vars_def,Once evaluate_def,AllCaseEqs(),set_var_def,lookup_insert]
QED
Theorem eval_upd_clock_eq:
!t e ck. eval (t with clock := ck) e = eval t e
Proof
ho_match_mp_tac eval_ind >> rw [] >>
fs [eval_def]
>- (
every_case_tac >> fs [] >>
fs [mem_load_def]) >>
ntac 2 AP_THM_TAC >> ntac 2 AP_TERM_TAC >>
match_mp_tac MAP_CONG >>
rw[]
QED
Theorem eval_upd_locals_clock_eq:
!t e l ck. eval (t with <|locals := l; clock := ck|>) e = eval (t with locals := l) e
Proof
rpt strip_tac >>
qspec_then ‘ck’
(dep_rewrite.DEP_ONCE_REWRITE_TAC o single o GSYM)
(CONV_RULE (RESORT_FORALL_CONV List.rev) eval_upd_clock_eq) >>
simp[]
QED
Theorem cut_res_add_clock:
cut_res l (res,s) = (q,r) /\ q <> SOME TimeOut ==>
cut_res l (res,s with clock := ck + s.clock) =
(q,r with clock := ck + r.clock)
Proof
rw [cut_res_def, cut_state_def] >>
‘s.clock <> 0’ by fs [AllCaseEqs()] >>
fs [] >> rveq >> fs [dec_clock_def]
QED
Theorem evaluate_add_clock_eq:
!p t res st ck.
evaluate (p,t) = (res,st) /\ res <> SOME TimeOut ==>
evaluate (p,t with clock := t.clock + ck) = (res,st with clock := st.clock + ck)
Proof
recInduct evaluate_ind >> rw []
>~ [‘Seq’] >-
(fs [evaluate_def] >> pairarg_tac >> fs [] >>
pairarg_tac >> fs [] >> rveq >>
fs [AllCaseEqs ()] >> rveq >> fs [] >>
first_x_assum (qspec_then ‘ck’ mp_tac) >>
fs [])
>~ [‘If’] >-
(fs [evaluate_def, AllCaseEqs ()] >>
rveq >> cases_on ‘ri’ >> fs [get_var_imm_def] >>
TOP_CASE_TAC >> cases_on ‘evaluate (c1,s)’ >> cases_on ‘evaluate (c2,s)’ >>
fs [cut_res_def, cut_state_def, AllCaseEqs (), dec_clock_def] >>
rveq >> fs [])
>~ [‘FFI’] >-
(fs [evaluate_def, AllCaseEqs (), cut_state_def, call_env_def] >>
rveq >> fs [])
>~ [‘Loop’] >-
(fs [Once evaluate_def] >>
TOP_CASE_TAC >> fs [] >>
cases_on ‘cut_res live_in ((NONE:'a result option),s)’ >>
fs [] >>
‘q' <> SOME TimeOut’ by (
CCONTR_TAC >>
fs [cut_res_def, cut_state_def, AllCaseEqs(), dec_clock_def]) >>
drule cut_res_add_clock >>
disch_then (qspec_then ‘ck’ mp_tac) >> fs [] >>
strip_tac >> fs [] >> rveq >>
TOP_CASE_TAC >> fs [] >>
cases_on ‘evaluate (body,r')’ >> fs [] >> rveq >>
cases_on ‘q’ >> fs [] >>
cases_on ‘x’ >> fs [] >> rveq >> fs []
>- (imp_res_tac cut_res_add_clock >> res_tac >> fs []) >>
first_x_assum match_mp_tac >>
TOP_CASE_TAC >> fs [] >>
reverse TOP_CASE_TAC >> fs []
>- fs [Once evaluate_def] >>
TOP_CASE_TAC >> fs [] >>
TOP_CASE_TAC >> fs [] >>
fs [Once evaluate_def])
>~ [‘Call’] >-
(fs [evaluate_def, get_vars_clock_upd_eq, dec_clock_def] >>
ntac 4 (TOP_CASE_TAC >> fs [])
>- (
fs [AllCaseEqs()] >>
‘s.clock <> 0’ by (
fs [AllCaseEqs()] >> rveq >> fs []) >>
rveq >> fs []) >>
TOP_CASE_TAC >> fs [] >>
cases_on ‘cut_res r' ((NONE:'a result option),s)’ >>
fs [] >>
‘q'' <> SOME TimeOut’ by (
CCONTR_TAC >>
fs [cut_res_def, cut_state_def, AllCaseEqs(), dec_clock_def]) >>
drule cut_res_add_clock >>
disch_then (qspec_then ‘ck’ mp_tac) >> fs [] >>
strip_tac >> fs [] >>
TOP_CASE_TAC >> fs [] >>
cases_on ‘evaluate (r,r'' with locals := q)’ >> fs [] >> rveq >>
cases_on ‘q''’ >> fs [] >> rveq >>
cases_on ‘x'’ >> fs [] >> rveq >>
TOP_CASE_TAC >> fs [] >> rveq >>
fs [set_var_def] >>
rpt (TOP_CASE_TAC >> fs []) >>
qmatch_goalsub_abbrev_tac ‘cut_res nr (evaluate (rq,ar)) = _’ >>
qmatch_asmsub_abbrev_tac ‘evaluate (rq, lr)’ >>
cases_on ‘evaluate (rq, lr)’ >>
qmatch_asmsub_rename_tac ‘ evaluate _ = (tq,tr)’ >>
‘tq <> SOME TimeOut’ by (
CCONTR_TAC >>
unabbrev_all_tac >>
fs [cut_res_def, cut_state_def, AllCaseEqs(), dec_clock_def]) >>
first_x_assum (qspecl_then [‘tq’, ‘tr’, ‘ck’] mp_tac) >>
fs [] >> strip_tac >>
imp_res_tac cut_res_add_clock >>
res_tac >> fs []) >>
TRY (Cases_on ‘op’)>>
fs [evaluate_def, eval_upd_clock_eq, AllCaseEqs () ,
set_var_def, mem_store_def, set_globals_def,
call_env_def, dec_clock_def,
sh_mem_op_def,sh_mem_load_def,sh_mem_store_def,
DefnBase.one_line_ify NONE loop_arith_def] >> rveq >>
gvs [state_component_equality]
QED
Theorem evaluate_nested_seq_comb_seq:
!p q t.
evaluate (Seq (nested_seq p) (nested_seq q), t) =
evaluate (nested_seq (p ++ q), t)
Proof
Induct >> rw [] >>
fs [nested_seq_def, evaluate_def] >>
pairarg_tac >> fs [] >>
pairarg_tac >> fs [] >>
cases_on ‘res' = NONE’ >> fs [] >> rveq >> fs [] >>
first_x_assum (qspecl_then [‘q’,‘s1'’] mp_tac) >>
fs []
QED
Theorem nested_seq_pure_evaluation:
!p q t r st l m e v ck ck'.
evaluate (nested_seq p,t with clock := ck + t.clock) = (NONE,st) /\
evaluate (nested_seq q,st with clock := ck' + st.clock) = (NONE,r) /\
comp_syntax_ok l (nested_seq p) /\
comp_syntax_ok (cut_sets l (nested_seq p)) (nested_seq q) /\
(!n. MEM n (assigned_vars (nested_seq p)) ==> n < m) /\
(!n. MEM n (assigned_vars (nested_seq q)) ==> m <= n) /\
(!n. MEM n (locals_touched e) ==> n < m /\ n ∈ domain (cut_sets l (nested_seq p))) /\
eval st e = SOME v ==>
eval r e = SOME v
Proof
rw [] >>
drule_all comp_syn_ok_upd_local_clock >>
fs [] >> strip_tac >>
‘st.globals = r.globals /\ st.memory = r.memory /\
st.base_addr = r.base_addr ∧ st.mdomain = r.mdomain’
by fs [state_component_equality] >>
drule locals_touched_eq_eval_eq >> fs [] >>
disch_then (qspec_then ‘e’ mp_tac) >> fs [] >>
impl_tac
>- (
rw [] >>
drule comp_syn_ok_lookup_locals_eq >>
disch_then (qspecl_then [‘cut_sets l (nested_seq p)’, ‘n’] mp_tac) >>
impl_tac
>- (
fs [] >>
CCONTR_TAC >> fs [] >>
res_tac >> fs []) >> fs []) >> fs []
QED
Theorem evaluate_io_events_mono:
!exps s1 res s2.
evaluate (exps,s1) = (res, s2)
⇒
s1.ffi.io_events ≼ s2.ffi.io_events
Proof
recInduct evaluate_ind >>
rw []
>~ [‘Seq’] >-
(fs [evaluate_def] >>
pairarg_tac >> fs [] >> rveq >>
every_case_tac >> fs [] >> rveq >>
metis_tac [IS_PREFIX_TRANS])
>~ [‘If’] >-
(fs [evaluate_def] >>
every_case_tac >> fs [] >> rveq >>
fs [] >>
TRY (cases_on ‘evaluate (c1,s)’) >>
TRY (cases_on ‘evaluate (c2,s)’) >>
fs [cut_res_def] >>
every_case_tac >> fs [] >> rveq >>
fs [cut_state_def] >> rveq >> fs [dec_clock_def])
>~ [‘Loop’] >-
(pop_assum mp_tac >>
once_rewrite_tac [evaluate_def, LET_THM] >>
fs [AllCaseEqs()] >>
fs [cut_res_def, cut_state_def, dec_clock_def] >> rveq >>
fs [AllCaseEqs()] >>
strip_tac >> fs [] >> rveq >> fs [] >>
metis_tac [IS_PREFIX_TRANS])
>~ [‘Call’] >-
(pop_assum mp_tac >>
once_rewrite_tac [evaluate_def, LET_THM] >>
fs [AllCaseEqs(), cut_res_def, cut_state_def,
dec_clock_def, set_var_def] >>
strip_tac >> fs [] >> rveq >> fs []
>- (
cases_on ‘evaluate (r,st with locals := insert n retv (inter s.locals live))’ >>
fs [AllCaseEqs(), cut_res_def, cut_state_def,
dec_clock_def, set_var_def] >> rveq >> fs [] >>
metis_tac [IS_PREFIX_TRANS]) >>
cases_on ‘evaluate (h,st with locals := insert n' exn (inter s.locals live))’ >>
fs [AllCaseEqs(), cut_res_def, cut_state_def,
dec_clock_def, set_var_def] >> rveq >> fs [] >>
metis_tac [IS_PREFIX_TRANS])
>~ [‘FFI’] >-
(fs [evaluate_def, AllCaseEqs(), cut_state_def,
dec_clock_def, ffiTheory.call_FFI_def, call_env_def] >>
rveq >> fs [])
>~ [‘ShMem’]>-
(Cases_on ‘op’>>
fs [evaluate_def,DefnBase.one_line_ify NONE loop_arith_def,AllCaseEqs()] >>
fs [set_var_def, sh_mem_op_def,sh_mem_store_def,sh_mem_load_def,call_env_def] >>
rveq >>
fs [ffiTheory.call_FFI_def,AllCaseEqs()]>>rveq>>
fs[state_component_equality])>>
fs [evaluate_def,DefnBase.one_line_ify NONE loop_arith_def,AllCaseEqs()] >>
fs [set_var_def, mem_store_def, set_globals_def, call_env_def, dec_clock_def,
sh_mem_op_def,sh_mem_store_def,sh_mem_load_def] >> rveq >>
fs []
QED
Theorem evaluate_add_clock_io_events_mono:
∀exps s extra.
(SND(evaluate(exps,s))).ffi.io_events ≼
(SND(evaluate(exps,s with clock := s.clock + extra))).ffi.io_events
Proof
recInduct evaluate_ind >>
rw [] >>
TRY (
rename [‘Seq’] >>
fs [evaluate_def] >>
pairarg_tac >> fs [] >> rveq >>
pairarg_tac >> fs [] >> rveq >>
every_case_tac >> fs [] >> rveq >> fs []
>- (
pop_assum mp_tac >>
drule evaluate_add_clock_eq >>
disch_then (qspec_then ‘extra’ mp_tac) >>
fs [] >>
strip_tac >>
strip_tac >> rveq >> fs [])
>- (
pop_assum mp_tac >>
pop_assum mp_tac >>
drule evaluate_add_clock_eq >>
disch_then (qspec_then ‘extra’ mp_tac) >>
fs [])
>- (
first_x_assum (qspec_then ‘extra’ mp_tac) >>
strip_tac >>
‘s1.ffi.io_events ≼ s1'.ffi.io_events’ by rfs [] >>
cases_on ‘evaluate (c2,s1')’ >>
fs [] >>
‘s1'.ffi.io_events ≼ r.ffi.io_events’ by
metis_tac [evaluate_io_events_mono] >>
metis_tac [IS_PREFIX_TRANS]) >>