forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 2
/
workflow_by_code.py
86 lines (75 loc) · 2.97 KB
/
workflow_by_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""
Qlib provides two kinds of interfaces.
(1) Users could define the Quant research workflow by a simple configuration.
(2) Qlib is designed in a modularized way and supports creating research workflow by code just like building blocks.
The interface of (1) is `qrun XXX.yaml`. The interface of (2) is script like this, which nearly does the same thing as `qrun XXX.yaml`
"""
import qlib
from qlib.constant import REG_CN
from qlib.utils import init_instance_by_config, flatten_dict
from qlib.workflow import R
from qlib.workflow.record_temp import SignalRecord, PortAnaRecord, SigAnaRecord
from qlib.tests.data import GetData
from qlib.tests.config import CSI300_BENCH, CSI300_GBDT_TASK
if __name__ == "__main__":
# use default data
provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir
GetData().qlib_data(target_dir=provider_uri, region=REG_CN, exists_skip=True)
qlib.init(provider_uri=provider_uri, region=REG_CN)
model = init_instance_by_config(CSI300_GBDT_TASK["model"])
dataset = init_instance_by_config(CSI300_GBDT_TASK["dataset"])
port_analysis_config = {
"executor": {
"class": "SimulatorExecutor",
"module_path": "qlib.backtest.executor",
"kwargs": {
"time_per_step": "day",
"generate_portfolio_metrics": True,
},
},
"strategy": {
"class": "TopkDropoutStrategy",
"module_path": "qlib.contrib.strategy.signal_strategy",
"kwargs": {
"signal": (model, dataset),
"topk": 50,
"n_drop": 5,
},
},
"backtest": {
"start_time": "2017-01-01",
"end_time": "2020-08-01",
"account": 100000000,
"benchmark": CSI300_BENCH,
"exchange_kwargs": {
"freq": "day",
"limit_threshold": 0.095,
"deal_price": "close",
"open_cost": 0.0005,
"close_cost": 0.0015,
"min_cost": 5,
},
},
}
# NOTE: This line is optional
# It demonstrates that the dataset can be used standalone.
example_df = dataset.prepare("train")
print(example_df.head())
# start exp
with R.start(experiment_name="workflow"):
R.log_params(**flatten_dict(CSI300_GBDT_TASK))
model.fit(dataset)
R.save_objects(**{"params.pkl": model})
# prediction
recorder = R.get_recorder()
sr = SignalRecord(model, dataset, recorder)
sr.generate()
# Signal Analysis
sar = SigAnaRecord(recorder)
sar.generate()
# backtest. If users want to use backtest based on their own prediction,
# please refer to https://qlib.readthedocs.io/en/latest/component/recorder.html#record-template.
par = PortAnaRecord(recorder, port_analysis_config, "day")
par.generate()