本文介绍如何在ACK上运行Spark作业,并使用EMR Spark Core优化性能。
- ACK标准集群,节点规格选用ecs.d1ne.6xlarge大数据型,共20个Worker节点。
- 阿里云OSS,并创建一个bucket,用来替换YAML文件中的OSS配置。
- 利用TPC-DS生成10TB数据,存储在阿里云OSS上,详情参考生成数据。
-
ACK集群Worker节点挂载磁盘
ecs.d1ne.6xlarge型实例默认自带12块5500G HDD数据盘,这些数据盘需要挂载后才能使用,挂载方式如下
wget https://shilei-tpc-ds.oss-cn-beijing.aliyuncs.com/tools/mount.tgz tar -xzvf mount.tgz cd mount/ ./mount # SSH password: 此时输入SSH密码后,开始自动执行磁盘挂载
-
ACK集群安装ack-spark-operator
通过安装ack-spark-operator组件,您可以使用ACK Spark Operator简化提交作业的操作。
1). 登录容器服务管理控制台。
2). 在控制台左侧导航栏中,选择市场 > 应用目录。
3). 在应用目录页面,找到并单击ack-spark-operator。
4). 在应用目录 - ack-spark-operator页面右侧,单击创建。
-
ACK集群安装ack-spark-history-server(可选)
ACK Spark History Server通过记录Spark执行任务过程中的日志和事件信息,并提供UI界面,帮助排查问题。
在创建ack-spark-history-server组件时,您需在参数页签配置OSS相关的信息,用于存储Spark历史数据。
1). 登录容器服务管理控制台。
2). 在控制台左侧导航栏中,选择市场 > 应用目录。
3). 在应用目录页面,找到并单击ack-spark-history-server。
4). 在应用目录 - ack-spark-history-server页面右侧,单击创建。
apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
name: tpcds-benchmark-emrspark-10t
namespace: default
spec:
type: Scala
mode: cluster
image: registry.cn-beijing.aliyuncs.com/zf-spark/spark-2.4.5:for-tpc-ds-2
imagePullPolicy: Always
mainClass: com.databricks.spark.sql.perf.tpcds.TPCDS_Standalone
mainApplicationFile: "oss://<YOUR-BUCKET>/jars/spark-sql-perf-assembly-0.5.0-SNAPSHOT.jar"
arguments:
- "--dataset_location"
- "oss://<YOUR-BUCKET>/datasets/"
- "--output_location"
- "oss://<YOUR-BUCKET>/outputs/ack-pr-10t-emr"
- "--iterations"
- "1"
- "--shuffle_partitions"
- "1000"
- "--scale_factor"
- "10000"
- "--regenerate_dataset"
- "false"
- "--regenerate_metadata"
- "false"
- "--only_generate_data_and_meta"
- "false"
- "--format"
- "parquet"
- "--query_exclude_list"
- "q14a,q14b,q67"
sparkVersion: 2.4.5
restartPolicy:
type: Never
hadoopConf:
"fs.oss.impl": "org.apache.hadoop.fs.aliyun.oss.AliyunOSSFileSystem"
"fs.oss.endpoint": "<YOUR-OSS-ENDPOINT>"
"fs.oss.accessKeyId": "<YOUR-ACCESS-KEY-ID>"
"fs.oss.accessKeySecret": "<YOUR-ACCESS-KEY-SECRET>"
hive.metastore.uris: thrift://service-hive-metastore.default:9083
hive.metastore.client.socket.timeout: 600s
sparkConf:
spark.eventLog.enabled: "true"
spark.eventLog.dir: "oss://<YOUR-BUCKET>/spark/eventlogs"
spark.driver.extraJavaOptions: "-XX:-PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps"
spark.driver.maxResultSize: 40g
spark.executor.extraJavaOptions: "-XX:MaxDirectMemorySize=6g -XX:-PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps"
spark.locality.wait.node: "0"
spark.locality.wait.process: "0"
spark.locality.wait.rack: "0"
spark.locality.wait: "0"
spark.memory.fraction: "0.8"
spark.memory.offHeap.enabled: "false"
spark.memory.offHeap.size: "17179869184"
spark.sql.adaptive.bloomFilterJoin.enabled: "false"
spark.sql.adaptive.enabled: "false"
spark.sql.analyze.column.async.delay: "200"
spark.sql.auto.reused.cte.enabled: "true"
spark.sql.broadcastTimeout: "3600"
spark.sql.columnVector.offheap.enabled: "false"
spark.sql.crossJoin.enabled: "true"
spark.sql.delete.optimizeInSubquery: "true"
spark.sql.dynamic.runtime.filter.bbf.enabled: "false"
spark.sql.dynamic.runtime.filter.enabled: "true"
spark.sql.dynamic.runtime.filter.exact.enabled: "true"
spark.sql.dynamic.runtime.filter.table.size.lower.limit: "1069547520"
spark.sql.dynamic.runtime.filter.table.size.upper.limit: "5368709120"
spark.sql.files.openCostInBytes: "34108864"
spark.sql.inMemoryColumnarStorage.compressed: "true"
spark.sql.join.preferNativeJoin: "false"
spark.sql.native.codecache: "true"
spark.sql.native.codegen.wholeStage: "false"
spark.sql.native.nativewrite: "false"
spark.sql.pkfk.optimize.enable: "true"
spark.sql.pkfk.riJoinElimination: "true"
spark.sql.shuffle.partitions: "1000"
spark.sql.simplifyDecimal.enabled: "true"
spark.sql.sources.parallelPartitionDiscovery.parallelism: "432"
spark.sql.sources.parallelPartitionDiscovery.threshold: "32"
spark.shuffle.reduceLocality.enabled: "false"
spark.shuffle.service.enabled: "false"
spark.dynamicAllocation.enabled: "false"
spark.local.dir: /mnt/diskb/spark-data,/mnt/diskc/spark-data,/mnt/diskd/spark-data,/mnt/diske/spark-data,/mnt/diskf/spark-data,/mnt/diskg/spark-data,/mnt/diskh/spark-data,/mnt/diski/spark-data,/mnt/diskj/spark-data,/mnt/diskk/spark-data,/mnt/diskl/spark-data,/mnt/diskm/spark-data
spark.shuffle.manager: org.apache.spark.shuffle.sort.SortShuffleManager
volumes:
- name: diskb
hostPath:
path: /mnt/diskb
type: Directory
- name: diskc
hostPath:
path: /mnt/diskc
type: Directory
- name: diskd
hostPath:
path: /mnt/diskd
type: Directory
- name: diske
hostPath:
path: /mnt/diske
type: Directory
- name: diskf
hostPath:
path: /mnt/diskf
type: Directory
- name: diskg
hostPath:
path: /mnt/diskg
type: Directory
- name: diskh
hostPath:
path: /mnt/diskh
type: Directory
- name: diski
hostPath:
path: /mnt/diski
type: Directory
- name: diskj
hostPath:
path: /mnt/diskj
type: Directory
- name: diskk
hostPath:
path: /mnt/diskk
type: Directory
- name: diskl
hostPath:
path: /mnt/diskl
type: Directory
- name: diskm
hostPath:
path: /mnt/diskm
type: Directory
driver:
cores: 15
coreLimit: 15000m
memory: 50g
labels:
version: 2.4.5
serviceAccount: spark
env:
- name: TZ
value: "Asia/Shanghai"
executor:
cores: 4
coreLimit: 6000m
instances: 20
memory: 24g
memoryOverhead: 10g
deleteOnTermination: false
labels:
version: 2.4.5
env:
- name: TZ
value: "Asia/Shanghai"
volumeMounts:
- mountPath: /mnt/diskb
name: diskb
- mountPath: /mnt/diskc
name: diskc
- mountPath: /mnt/diskd
name: diskd
- mountPath: /mnt/diske
name: diske
- mountPath: /mnt/diskf
name: diskf
- mountPath: /mnt/diskg
name: diskg
- mountPath: /mnt/diskh
name: diskh
- mountPath: /mnt/diski
name: diski
- mountPath: /mnt/diskj
name: diskj
- mountPath: /mnt/diskk
name: diskk
- mountPath: /mnt/diskl
name: diskl
- mountPath: /mnt/diskm
name: diskm
完整YAML文件可参考tpcds-benchmark-with-emrspark,其中spec.mainApplicationFile中的jar包 可通过这里下载,放在自己的OSS中。