-
Notifications
You must be signed in to change notification settings - Fork 3
/
modelsubst.h
265 lines (219 loc) · 8.18 KB
/
modelsubst.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//
// C++ Interface: substmodel
//
// Description:
//
//
// Author: BUI Quang Minh, Steffen Klaere, Arndt von Haeseler <[email protected]>, (C) 2008
//
// Copyright: See COPYING file that comes with this distribution
//
//
#ifndef SUBSTMODEL_H
#define SUBSTMODEL_H
#include <string>
#include "tools.h"
#include "optimization.h"
using namespace std;
/**
Substitution model abstract class
@author BUI Quang Minh, Steffen Klaere, Arndt von Haeseler <[email protected]>
*/
class ModelSubst: public Optimization
{
friend class ModelFactory;
public:
/**
constructor
@param nstates number of states, e.g. 4 for DNA, 20 for proteins.
*/
ModelSubst(int nstates);
/**
@return the number of dimensions
*/
virtual int getNDim() { return 0; }
/**
@return TRUE if model is time-reversible, FALSE otherwise
*/
virtual bool isReversible() { return true; };
/**
* @return TRUE if this is a site-specific model, FALSE otherwise
*/
virtual bool isSiteSpecificModel() { return false; }
/**
@return the number of rate entries, equal to the number of elements
in the upper-diagonal of the rate matrix (since model is reversible)
*/
virtual int getNumRateEntries() { return num_states*(num_states-1)/2; }
/**
* get the size of transition matrix, default is num_states*num_states.
* can be changed for e.g. site-specific model
*/
virtual int getTransMatrixSize() { return num_states * num_states; }
/**
compute the transition probability matrix. One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
*/
virtual void computeTransMatrix(double time, double *trans_matrix);
/**
* wrapper for computing transition matrix times state frequency vector
* @param time time between two events
* @param trans_matrix (OUT) the transition matrix between all pairs of states.
* Assume trans_matrix has size of num_states * num_states.
*/
virtual void computeTransMatrixFreq(double time, double *trans_matrix);
/**
compute the transition probability between two states.
One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param state1 first state
@param state2 second state
*/
virtual double computeTrans(double time, int state1, int state2);
/**
compute the transition probability between two states at a specific model ID, useful for partition model
One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param model_id model ID
@param state1 first state
@param state2 second state
*/
virtual double computeTrans(double time, int model_id, int state1, int state2);
/**
compute the transition probability and its 1st and 2nd derivatives between two states.
One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param state1 first state
@param state2 second state
@param derv1 (OUT) 1st derivative
@param derv2 (OUT) 2nd derivative
*/
virtual double computeTrans(double time, int state1, int state2, double &derv1, double &derv2);
/**
compute the transition probability and its 1st and 2nd derivatives between two states at a specific model ID
One should override this function when defining new model.
The default is the Juke-Cantor model, valid for all kind of data (DNA, AA, Codon, etc)
@param time time between two events
@param model_id model ID
@param state1 first state
@param state2 second state
@param derv1 (OUT) 1st derivative
@param derv2 (OUT) 2nd derivative
*/
virtual double computeTrans(double time, int model_id, int state1, int state2, double &derv1, double &derv2);
/**
* @return pattern ID to model ID map, useful for e.g., partition model
* @param ptn pattern ID of the alignment
*/
virtual int getPtnModelID(int ptn) { return 0; }
/**
Get the rate matrix. One should override this function when defining new model.
The default is equal rate of 1 (JC Model), valid for all kind of data.
@param rate_mat (OUT) upper-triagle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
*/
virtual void getRateMatrix(double *rate_mat);
/**
Get the rate matrix Q. One should override this function when defining new model.
The default is equal rate of 1 (JC Model), valid for all kind of data.
@param rate_mat (OUT) upper-triagle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
*/
virtual void getQMatrix(double *q_mat);
/**
compute the state frequency vector. One should override this function when defining new model.
The default is equal state sequency, valid for all kind of data.
@param state_freq (OUT) state frequency vector. Assume state_freq has size of num_states
*/
virtual void getStateFrequency(double *state_freq);
/**
get frequency type
@return frequency type
*/
virtual StateFreqType getFreqType() { return FREQ_EQUAL; }
/**
allocate memory for a transition matrix. One should override this function when defining new model
such as Gamma model. The default is to allocate a double vector of size num_states * num_states. This
is equivalent to the memory needed by a square matrix.
@return the pointer to the newly allocated transition matrix
*/
virtual double *newTransMatrix();
/**
compute the transition probability matrix.and the derivative 1 and 2
@param time time between two events
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
@param trans_derv1 (OUT) the 1st derivative matrix between all pairs of states.
@param trans_derv2 (OUT) the 2nd derivative matrix between all pairs of states.
*/
virtual void computeTransDerv(double time, double *trans_matrix,
double *trans_derv1, double *trans_derv2);
/**
compute the transition probability matrix.and the derivative 1 and 2 times state frequency vector
@param time time between two events
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
@param trans_derv1 (OUT) the 1st derivative matrix between all pairs of states.
@param trans_derv2 (OUT) the 2nd derivative matrix between all pairs of states.
*/
virtual void computeTransDervFreq(double time, double rate_val, double *trans_matrix,
double *trans_derv1, double *trans_derv2);
/**
decompose the rate matrix into eigenvalues and eigenvectors
*/
virtual void decomposeRateMatrix() {}
/**
optimize model parameters. One should override this function when defining new model.
The default does nothing since it is a Juke-Cantor type model, hence no parameters involved.
@param epsilon accuracy of the parameters during optimization
@return the best likelihood
*/
virtual double optimizeParameters(double epsilon) { return 0.0; }
/**
write information
@param out output stream
*/
virtual void writeInfo(ostream &out) {}
/**
number of states
*/
int num_states;
/**
name of the model
*/
string name;
/**
full name of the model
*/
string full_name;
/**
state frequencies
*/
double *state_freq;
/**
state frequency type
*/
StateFreqType freq_type;
/**
destructor
*/
virtual ~ModelSubst();
protected:
/**
this function is served for the multi-dimension optimization. It should pack the model parameters
into a vector that is index from 1 (NOTE: not from 0)
@param variables (OUT) vector of variables, indexed from 1
*/
virtual void setVariables(double *variables) {}
/**
this function is served for the multi-dimension optimization. It should assign the model parameters
from a vector of variables that is index from 1 (NOTE: not from 0)
@param variables vector of variables, indexed from 1
*/
virtual void getVariables(double *variables) {}
};
#endif