diff --git a/lammps-stable_29Aug2024/colvars-refman-lammps.css b/lammps-stable_29Aug2024/colvars-refman-lammps.css new file mode 100644 index 00000000..9bf71f91 --- /dev/null +++ b/lammps-stable_29Aug2024/colvars-refman-lammps.css @@ -0,0 +1,721 @@ + +/* start css.sty */ +.phvr8t-x-x-109{ font-family: sans-serif;} +.phvr8t-x-x-109{ font-family: sans-serif;} +.zptmcm7t-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7t-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7t-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7t-x-x-80{font-size:72%; font-weight: bold; font-style: italic;} +.zptmcm7t-x-x-80{ font-weight: bold; font-style: italic;} +.zptmcm7t-x-x-80{ font-weight: bold; font-style: italic;} +.zptmcm7t-x-x-60{font-size:54%; font-weight: bold; font-style: italic;} +.zptmcm7t-x-x-60{ font-weight: bold; font-style: italic;} +.zptmcm7t-x-x-60{ font-weight: bold; font-style: italic;} +.zptmcm7m-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7m-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7m-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7m-x-x-80{font-size:72%; font-weight: bold; font-style: italic;} +.zptmcm7m-x-x-80{ font-weight: bold; font-style: italic;} +.zptmcm7m-x-x-80{ font-weight: bold; font-style: italic;} +.zptmcm7m-x-x-60{font-size:54%; font-weight: bold; font-style: italic;} +.zptmcm7m-x-x-60{ font-weight: bold; font-style: italic;} +.zptmcm7m-x-x-60{ font-weight: bold; font-style: italic;} +.zptmcm7y-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7y-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7y-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7y-x-x-80{font-size:72%; font-weight: bold; font-style: italic;} +.zptmcm7y-x-x-80{ font-weight: bold; font-style: italic;} +.zptmcm7y-x-x-80{ font-weight: bold; font-style: italic;} +.zptmcm7y-x-x-60{font-size:54%; font-weight: bold; font-style: italic;} +.zptmcm7y-x-x-60{ font-weight: bold; font-style: italic;} +.zptmcm7y-x-x-60{ font-weight: bold; font-style: italic;} +.zptmcm7v-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7v-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7v-x-x-109{ font-weight: bold; font-style: italic;} +.zptmcm7v-x-x-80{font-size:72%; font-weight: bold; font-style: italic;} +.zptmcm7v-x-x-80{ font-weight: bold; font-style: italic;} +.zptmcm7v-x-x-80{ font-weight: bold; font-style: italic;} +.zptmcm7v-x-x-60{font-size:54%; font-weight: bold; font-style: italic;} +.zptmcm7v-x-x-60{ font-weight: bold; font-style: italic;} +.zptmcm7v-x-x-60{ font-weight: bold; font-style: italic;} +.msam-10x-x-109{} +.msam-10x-x-80{font-size:72%;} +.msam-7x-x-85{font-size:54%;} +.msbm-10x-x-109{} +.msbm-10x-x-80{font-size:72%;} +.msbm-7x-x-85{font-size:54%;} +.ptmb7t-x-x-109{ font-weight: bold;} +.ptmb7t-x-x-109{ font-weight: bold;} +.ptmb7t-x-x-80{font-size:72%; font-weight: bold;} +.ptmb7t-x-x-80{ font-weight: bold;} +.phvb8t-x-x-109{font-family: sans-serif; font-weight: bold;} +.phvb8t-x-x-109{font-family: sans-serif; font-weight: bold;} +.phvb8t-x-x-248{font-size:225%;font-family: sans-serif; font-weight: bold;} +.phvb8t-x-x-248{font-family: sans-serif; font-weight: bold;} +.phvr8t-x-x-120{font-size:109%; font-family: sans-serif;} +.phvr8t-x-x-120{ font-family: sans-serif;} +.ectt-1095{ font-family: monospace,monospace;} +.ectt-1095{ font-family: monospace,monospace;} +.ectt-1095{ font-family: monospace,monospace;} +.phvro8t-x-x-109{ font-family: sans-serif; font-style: oblique;} +.ecit-1095{ font-style: italic; font-family: monospace,monospace;} +.ecit-1095{ font-style: italic; font-family: monospace,monospace;} +.ecit-1095{ font-style: italic; font-family: monospace,monospace;} +.cmtt-10x-x-109{font-family: monospace,monospace;} +.cmtt-10x-x-109{font-family: monospace,monospace;} +.cmtt-8{font-size:72%;font-family: monospace,monospace;} +.cmtt-8{font-family: monospace,monospace;} +.cmss-10x-x-109{ font-family: sans-serif;} +.ectt-1000{font-size:90%; font-family: monospace,monospace;} +.ectt-1000{ font-family: monospace,monospace;} +.ectt-1000{ font-family: monospace,monospace;} +p{margin-top:0;margin-bottom:0} +p.indent{text-indent:0;} +p + p{margin-top:1em;} +p + div, p + pre {margin-top:1em;} +div + p, pre + p {margin-top:1em;} +a { overflow-wrap: break-word; word-wrap: break-word; word-break: break-word; hyphens: auto; } +@media print {div.crosslinks {visibility:hidden;}} +a img { border-top: 0; border-left: 0; border-right: 0; } +center { margin-top:1em; margin-bottom:1em; } +td center { margin-top:0em; margin-bottom:0em; } +.Canvas { position:relative; } +math { text-indent: 0em; } +li p.indent { text-indent: 0em } +li p:first-child{ margin-top:0em; } +li p:last-child, li div:last-child { margin-bottom:0.5em; } +li p~ul:last-child, li p~ol:last-child{ margin-bottom:0.5em; } +.enumerate1 {list-style-type:decimal;} +.enumerate2 {list-style-type:lower-alpha;} +.enumerate3 {list-style-type:lower-roman;} +.enumerate4 {list-style-type:upper-alpha;} +div.newtheorem { margin-bottom: 2em; margin-top: 2em;} +.obeylines-h,.obeylines-v {white-space: nowrap; } +div.obeylines-v p { margin-top:0; margin-bottom:0; } +.overline{ text-decoration:overline; } +.overline img{ border-top: 1px solid black; } +td.displaylines {text-align:center; white-space:nowrap;} +.centerline {text-align:center;} +.rightline {text-align:right;} +pre.verbatim {font-family: monospace,monospace; text-align:left; clear:both; } +.fbox {padding-left:3.0pt; padding-right:3.0pt; text-indent:0pt; border:solid black 0.4pt; } +div.fbox {display:table} +div.center div.fbox {text-align:center; clear:both; padding-left:3.0pt; padding-right:3.0pt; text-indent:0pt; border:solid black 0.4pt; } +div.minipage{width:100%;} +div.center, div.center div.center {text-align: center; margin-left:1em; margin-right:1em;} +div.center div {text-align: left;} +div.flushright, div.flushright div.flushright {text-align: right;} +div.flushright div {text-align: left;} +div.flushleft {text-align: left;} +.underline{ text-decoration:underline; } +.underline img{ border-bottom: 1px solid black; margin-bottom:1pt; } +.framebox-c, .framebox-l, .framebox-r { padding-left:3.0pt; padding-right:3.0pt; text-indent:0pt; border:solid black 0.4pt; } +.framebox-c {text-align:center;} +.framebox-l {text-align:left;} +.framebox-r {text-align:right;} +span.thank-mark{ vertical-align: super } +span.footnote-mark sup.textsuperscript, span.footnote-mark a sup.textsuperscript{ font-size:80%; } +div.tabular, div.center div.tabular {text-align: center; margin-top:0.5em; margin-bottom:0.5em; } +table.tabular td p{margin-top:0em;} +table.tabular {margin-left: auto; margin-right: auto;} +td p:first-child{ margin-top:0em; } +td p:last-child{ margin-bottom:0em; } +div.td00{ margin-left:0pt; margin-right:0pt; } +div.td01{ margin-left:0pt; margin-right:5pt; } +div.td10{ margin-left:5pt; margin-right:0pt; } +div.td11{ margin-left:5pt; margin-right:5pt; } +table[rules] {border-left:solid black 0.4pt; border-right:solid black 0.4pt; } +td.td00{ padding-left:0pt; padding-right:0pt; } +td.td01{ padding-left:0pt; padding-right:5pt; } +td.td10{ padding-left:5pt; padding-right:0pt; } +td.td11{ padding-left:5pt; padding-right:5pt; } +table[rules] {border-left:solid black 0.4pt; border-right:solid black 0.4pt; } +.hline hr, .cline hr{ height : 0px; margin:0px; } +.hline td, .cline td{ padding: 0; } +.hline hr, .cline hr{border:none;border-top:1px solid black;} +.tabbing-right {text-align:right;} +div.float, div.figure {margin-left: auto; margin-right: auto;} +div.float img {text-align:center;} +div.figure img {text-align:center;} +.marginpar,.reversemarginpar {width:20%; float:right; text-align:left; margin-left:auto; margin-top:0.5em; font-size:85%; text-decoration:underline;} +.marginpar p,.reversemarginpar p{margin-top:0.4em; margin-bottom:0.4em;} +.reversemarginpar{float:left;} +.equation td{text-align:center; vertical-align:middle; } +td.eq-no{ width:5%; } +table.equation { width:100%; } +div.math-display, div.par-math-display{text-align:center;} +mtr.hline mtd{ border-bottom:black solid 1px; padding-top:2px; padding-bottom:0em; } +mtr.hline mtd mo{ display:none } +math .texttt { font-family: monospace; } +math .textit { font-style: italic; } +math .textsl { font-style: oblique; } +math .textsf { font-family: sans-serif; } +math .textbf { font-weight: bold; } +mo.MathClass-op + mi{margin-left:0.3em} +mi + mo.MathClass-op{margin-left:0.3em} + math mstyle[mathvariant="bold"] { font-weight: bold; font-style: normal; } + math mstyle[mathvariant="normal"] { font-weight: normal; font-style: normal; } +.partToc a, .partToc, .likepartToc a, .likepartToc {line-height: 200%; font-weight:bold; font-size:110%;} +.chapterToc a, .chapterToc, .likechapterToc a, .likechapterToc, .appendixToc a, .appendixToc {line-height: 200%; font-weight:bold;} +.index-item, .index-subitem, .index-subsubitem {display:block} +div.caption {text-indent:-2em; margin-left:3em; margin-right:1em; text-align:left;} +div.caption span.id{font-weight: bold; white-space: nowrap; } +h1.partHead{text-align: center} +p.bibitem { text-indent: -2em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; } +p.bibitem-p { text-indent: 0em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; } +.paragraphHead, .likeparagraphHead { margin-top:2em; font-weight: bold;} +.subparagraphHead, .likesubparagraphHead { font-weight: bold;} +.verse{white-space:nowrap; margin-left:2em} +div.maketitle {text-align:center;} +h2.titleHead{text-align:center;} +div.maketitle{ margin-bottom: 2em; } +div.author, div.date {text-align:center;} +div.thanks{text-align:left; margin-left:10%; font-size:85%; font-style:italic; } +div.author{white-space: nowrap;} +div.abstract p {margin-left:5%; margin-right:5%;} +div.abstract {width:100%;} +.abstracttitle{text-align:center;margin-bottom:1em;} +.equation-star td{text-align:center; vertical-align:middle; } +table.equation-star { width:100%; } +mtd.align-odd{margin-left:2em; text-align:right;} +mtd.align-even{margin-right:2em; text-align:left;} +.boxed{border: 1px solid black; padding-left:2px; padding-right:2px;} +.rotatebox{display: inline-block;} +.mdframed{margin-top:1em;margin-bottom:1em;} +div.tabular, div.center div.tabular {text-align: center; margin-top:0.5em; margin-bottom:0.5em; } +table.tabular td p{margin-top:0em;} +table.tabular {margin-left: auto; margin-right: auto;} +td p:first-child{ margin-top:0em; } +td p:last-child{ margin-bottom:0em; } +div.td00{ margin-left:0pt; margin-right:0pt; } +div.td01{ margin-left:0pt; margin-right:5pt; } +div.td10{ margin-left:5pt; margin-right:0pt; } +div.td11{ margin-left:5pt; margin-right:5pt; } +table[rules] {border-left:solid black 0.4pt; border-right:solid black 0.4pt; } +td.td00{ padding-left:0pt; padding-right:0pt; } +td.td01{ padding-left:0pt; padding-right:5pt; } +td.td10{ padding-left:5pt; padding-right:0pt; } +td.td11{ padding-left:5pt; padding-right:5pt; } +table[rules] {border-left:solid black 0.4pt; border-right:solid black 0.4pt; } +.hline hr, .cline hr{ height : 0px; margin:0px; } +.hline td, .cline td{ padding: 0; } +.hline hr, .cline hr{border:none;border-top:1px solid black;} + body { font-family: sans-serif; } li { margin-bottom:1em; } .heading { background-color: rgb(215, 215, 215); } @media only screen and (max-width: 959px) { .inner { max-width: 100%; margin: 0 auto; } .diagram { width: 100%; } .cover { width: 100%; } } @media (min-width: 960px) { .inner { max-width: 960px; margin: 0 auto; } .diagram { width: 720px; } .cover { width: 512px; } } +span#colorbox1{background-color:rgb(214,214,214);} +#mdframed-1{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +#mdframed-2{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox2{background-color:#F2CCF2;} +#mdframed-3{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +span#colorbox3{background-color:#F2CCF2;} +span#colorbox4{background-color:#F2CCF2;} +span#colorbox5{background-color:#F2CCF2;} +span#colorbox6{background-color:#F2CCF2;} +span#colorbox7{background-color:#F2CCF2;} +#mdframed-4{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-5{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-6{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-7{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-8{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-9{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-10{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-11{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-12{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-13{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-14{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-15{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-16{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-17{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-18{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-19{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-20{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-21{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-22{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-23{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-24{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-25{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-26{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-27{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-28{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-29{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-30{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-31{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-32{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +span#colorbox8{background-color:#F2CCF2;} +span#colorbox9{background-color:#F2CCF2;} +span#colorbox10{background-color:#F2CCF2;} +span#colorbox11{background-color:#F2CCF2;} +#mdframed-33{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-34{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-35{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-36{border:2.0pt solid #0D3300; background-color: #F2FFCC; color:#000000;} +#mdframed-37{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-38{border:2.0pt solid #0D3300; background-color: #F2FFCC; color:#000000;} +#mdframed-39{border:2.0pt solid #0D3300; background-color: #F2FFCC; color:#000000;} +#mdframed-40{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-41{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox12{background-color:#F2CCF2;} +span#colorbox13{background-color:#F2CCF2;} +span#colorbox14{background-color:#F2CCF2;} +span#colorbox15{background-color:#F2CCF2;} +span#colorbox16{background-color:#F2CCF2;} +span#colorbox17{background-color:#F2CCF2;} +span#colorbox18{background-color:#F2CCF2;} +span#colorbox19{background-color:#F2CCF2;} +span#colorbox20{background-color:#F2CCF2;} +span#colorbox21{background-color:#F2CCF2;} +span#colorbox22{background-color:#F2CCF2;} +span#colorbox23{background-color:#F2CCF2;} +span#colorbox24{background-color:#F2CCF2;} +span#colorbox25{background-color:#F2CCF2;} +span#colorbox26{background-color:#F2CCF2;} +span#colorbox27{background-color:#F2CCF2;} +span#colorbox28{background-color:#F2CCF2;} +span#colorbox29{background-color:#F2CCF2;} +span#colorbox30{background-color:#F2CCF2;} +span#colorbox31{background-color:#F2CCF2;} +span#colorbox32{background-color:#F2CCF2;} +span#colorbox33{background-color:#F2CCF2;} +span#colorbox34{background-color:#F2CCF2;} +span#colorbox35{background-color:#F2CCF2;} +span#colorbox36{background-color:#F2CCF2;} +span#colorbox37{background-color:#F2CCF2;} +span#colorbox38{background-color:#F2CCF2;} +span#colorbox39{background-color:#F2CCF2;} +span#colorbox40{background-color:#F2CCF2;} +span#colorbox41{background-color:#F2CCF2;} +span#colorbox42{background-color:#F2CCF2;} +span#colorbox43{background-color:#F2CCF2;} +span#colorbox44{background-color:#F2CCF2;} +span#colorbox45{background-color:#F2CCF2;} +span#colorbox46{background-color:#F2CCF2;} +span#colorbox47{background-color:#F2CCF2;} +span#colorbox48{background-color:#F2CCF2;} +span#colorbox49{background-color:#F2CCF2;} +span#colorbox50{background-color:#F2CCF2;} +span#colorbox51{background-color:#F2CCF2;} +span#colorbox52{background-color:#F2CCF2;} +span#colorbox53{background-color:#F2CCF2;} +span#colorbox54{background-color:#F2CCF2;} +span#colorbox55{background-color:#F2CCF2;} +span#colorbox56{background-color:#F2CCF2;} +span#colorbox57{background-color:#F2CCF2;} +span#colorbox58{background-color:#F2CCF2;} +span#colorbox59{background-color:#F2CCF2;} +span#colorbox60{background-color:#F2CCF2;} +span#colorbox61{background-color:#F2CCF2;} +span#colorbox62{background-color:#F2CCF2;} +span#colorbox63{background-color:#F2CCF2;} +span#colorbox64{background-color:#F2CCF2;} +span#colorbox65{background-color:#F2CCF2;} +span#colorbox66{background-color:#F2CCF2;} +span#colorbox67{background-color:#F2CCF2;} +span#colorbox68{background-color:#F2CCF2;} +span#colorbox69{background-color:#F2CCF2;} +span#colorbox70{background-color:#F2CCF2;} +span#colorbox71{background-color:#F2CCF2;} +span#colorbox72{background-color:#F2CCF2;} +span#colorbox73{background-color:#F2CCF2;} +span#colorbox74{background-color:#F2CCF2;} +span#colorbox75{background-color:#F2CCF2;} +span#colorbox76{background-color:#F2CCF2;} +span#colorbox77{background-color:#F2CCF2;} +span#colorbox78{background-color:#F2CCF2;} +span#colorbox79{background-color:#F2CCF2;} +span#colorbox80{background-color:#F2CCF2;} +span#colorbox81{background-color:#F2CCF2;} +span#colorbox82{background-color:#F2CCF2;} +span#colorbox83{background-color:#F2CCF2;} +span#colorbox84{background-color:#F2CCF2;} +span#colorbox85{background-color:#F2CCF2;} +span#colorbox86{background-color:#F2CCF2;} +span#colorbox87{background-color:#F2CCF2;} +span#colorbox88{background-color:#F2CCF2;} +span#colorbox89{background-color:#F2CCF2;} +span#colorbox90{background-color:#F2CCF2;} +span#colorbox91{background-color:#F2CCF2;} +span#colorbox92{background-color:#F2CCF2;} +span#colorbox93{background-color:#F2CCF2;} +span#colorbox94{background-color:#F2CCF2;} +span#colorbox95{background-color:#F2CCF2;} +span#colorbox96{background-color:#F2CCF2;} +span#colorbox97{background-color:#F2CCF2;} +span#colorbox98{background-color:#F2CCF2;} +span#colorbox99{background-color:#F2CCF2;} +span#colorbox100{background-color:#F2CCF2;} +span#colorbox101{background-color:#F2CCF2;} +span#colorbox102{background-color:#F2CCF2;} +span#colorbox103{background-color:#F2CCF2;} +span#colorbox104{background-color:#F2CCF2;} +span#colorbox105{background-color:#F2CCF2;} +span#colorbox106{background-color:#F2CCF2;} +span#colorbox107{background-color:#F2CCF2;} +span#colorbox108{background-color:#F2CCF2;} +span#colorbox109{background-color:#F2CCF2;} +span#colorbox110{background-color:#F2CCF2;} +span#colorbox111{background-color:#F2CCF2;} +span#colorbox112{background-color:#F2CCF2;} +span#colorbox113{background-color:#F2CCF2;} +span#colorbox114{background-color:#F2CCF2;} +span#colorbox115{background-color:#F2CCF2;} +span#colorbox116{background-color:#F2CCF2;} +span#colorbox117{background-color:#F2CCF2;} +span#colorbox118{background-color:#F2CCF2;} +span#colorbox119{background-color:#F2CCF2;} +span#colorbox120{background-color:#F2CCF2;} +span#colorbox121{background-color:#F2CCF2;} +span#colorbox122{background-color:#F2CCF2;} +span#colorbox123{background-color:#F2CCF2;} +span#colorbox124{background-color:#F2CCF2;} +span#colorbox125{background-color:#F2CCF2;} +span#colorbox126{background-color:#F2CCF2;} +span#colorbox127{background-color:#F2CCF2;} +span#colorbox128{background-color:#F2CCF2;} +span#colorbox129{background-color:#F2CCF2;} +span#colorbox130{background-color:#F2CCF2;} +span#colorbox131{background-color:#F2CCF2;} +span#colorbox132{background-color:#F2CCF2;} +span#colorbox133{background-color:#F2CCF2;} +span#colorbox134{background-color:#F2CCF2;} +span#colorbox135{background-color:#F2CCF2;} +span#colorbox136{background-color:#F2CCF2;} +span#colorbox137{background-color:#F2CCF2;} +span#colorbox138{background-color:#F2CCF2;} +span#colorbox139{background-color:#F2CCF2;} +span#colorbox140{background-color:#F2CCF2;} +span#colorbox141{background-color:#F2CCF2;} +span#colorbox142{background-color:#F2CCF2;} +span#colorbox143{background-color:#F2CCF2;} +span#colorbox144{background-color:#F2CCF2;} +span#colorbox145{background-color:#F2CCF2;} +span#colorbox146{background-color:#F2CCF2;} +span#colorbox147{background-color:#F2CCF2;} +span#colorbox148{background-color:#F2CCF2;} +span#colorbox149{background-color:#F2CCF2;} +span#colorbox150{background-color:#F2CCF2;} +span#colorbox151{background-color:#F2CCF2;} +span#colorbox152{background-color:#F2CCF2;} +span#colorbox153{background-color:#F2CCF2;} +span#colorbox154{background-color:#F2CCF2;} +span#colorbox155{background-color:#F2CCF2;} +span#colorbox156{background-color:#F2CCF2;} +span#colorbox157{background-color:#F2CCF2;} +#mdframed-42{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox158{background-color:#F2CCF2;} +span#colorbox159{background-color:#F2CCF2;} +span#colorbox160{background-color:#F2CCF2;} +span#colorbox161{background-color:#F2CCF2;} +span#colorbox162{background-color:#F2CCF2;} +span#colorbox163{background-color:#F2CCF2;} +#mdframed-43{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox164{background-color:#F2CCF2;} +span#colorbox165{background-color:#F2CCF2;} +span#colorbox166{background-color:#F2CCF2;} +span#colorbox167{background-color:#F2CCF2;} +#mdframed-44{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox168{background-color:#F2CCF2;} +span#colorbox169{background-color:#F2CCF2;} +span#colorbox170{background-color:#F2CCF2;} +span#colorbox171{background-color:#F2CCF2;} +span#colorbox172{background-color:#F2CCF2;} +#mdframed-45{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox173{background-color:#F2CCF2;} +span#colorbox174{background-color:#F2CCF2;} +span#colorbox175{background-color:#F2CCF2;} +span#colorbox176{background-color:#F2CCF2;} +span#colorbox177{background-color:#F2CCF2;} +span#colorbox178{background-color:#F2CCF2;} +#mdframed-46{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox179{background-color:#F2CCF2;} +span#colorbox180{background-color:#F2CCF2;} +span#colorbox181{background-color:#F2CCF2;} +span#colorbox182{background-color:#F2CCF2;} +span#colorbox183{background-color:#F2CCF2;} +span#colorbox184{background-color:#F2CCF2;} +span#colorbox185{background-color:#F2CCF2;} +span#colorbox186{background-color:#F2CCF2;} +#mdframed-47{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox187{background-color:#F2CCF2;} +span#colorbox188{background-color:#F2CCF2;} +span#colorbox189{background-color:#F2CCF2;} +span#colorbox190{background-color:#F2CCF2;} +span#colorbox191{background-color:#F2CCF2;} +span#colorbox192{background-color:#F2CCF2;} +span#colorbox193{background-color:#F2CCF2;} +span#colorbox194{background-color:#F2CCF2;} +span#colorbox195{background-color:#F2CCF2;} +span#colorbox196{background-color:#F2CCF2;} +span#colorbox197{background-color:#F2CCF2;} +span#colorbox198{background-color:#F2CCF2;} +span#colorbox199{background-color:#F2CCF2;} +span#colorbox200{background-color:#F2CCF2;} +span#colorbox201{background-color:#F2CCF2;} +span#colorbox202{background-color:#F2CCF2;} +span#colorbox203{background-color:#F2CCF2;} +span#colorbox204{background-color:#F2CCF2;} +span#colorbox205{background-color:#F2CCF2;} +span#colorbox206{background-color:#F2CCF2;} +span#colorbox207{background-color:#F2CCF2;} +span#colorbox208{background-color:#F2CCF2;} +span#colorbox209{background-color:#F2CCF2;} +span#colorbox210{background-color:#F2CCF2;} +span#colorbox211{background-color:#F2CCF2;} +span#colorbox212{background-color:#F2CCF2;} +span#colorbox213{background-color:#F2CCF2;} +span#colorbox214{background-color:#F2CCF2;} +span#colorbox215{background-color:#F2CCF2;} +span#colorbox216{background-color:#F2CCF2;} +span#colorbox217{background-color:#F2CCF2;} +span#colorbox218{background-color:#F2CCF2;} +span#colorbox219{background-color:#F2CCF2;} +#mdframed-48{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +#mdframed-49{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox220{background-color:#F2CCF2;} +span#colorbox221{background-color:#F2CCF2;} +span#colorbox222{background-color:#F2CCF2;} +span#colorbox223{background-color:#F2CCF2;} +span#colorbox224{background-color:#F2CCF2;} +span#colorbox225{background-color:#F2CCF2;} +span#colorbox226{background-color:#F2CCF2;} +span#colorbox227{background-color:#F2CCF2;} +span#colorbox228{background-color:#F2CCF2;} +span#colorbox229{background-color:#F2CCF2;} +span#colorbox230{background-color:#F2CCF2;} +span#colorbox231{background-color:#F2CCF2;} +#mdframed-50{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox232{background-color:#F2CCF2;} +span#colorbox233{background-color:#F2CCF2;} +span#colorbox234{background-color:#F2CCF2;} +span#colorbox235{background-color:#F2CCF2;} +span#colorbox236{background-color:#F2CCF2;} +span#colorbox237{background-color:#F2CCF2;} +span#colorbox238{background-color:#F2CCF2;} +span#colorbox239{background-color:#F2CCF2;} +span#colorbox240{background-color:#F2CCF2;} +span#colorbox241{background-color:#F2CCF2;} +span#colorbox242{background-color:#F2CCF2;} +span#colorbox243{background-color:#F2CCF2;} +span#colorbox244{background-color:#F2CCF2;} +span#colorbox245{background-color:#F2CCF2;} +span#colorbox246{background-color:#F2CCF2;} +span#colorbox247{background-color:#F2CCF2;} +span#colorbox248{background-color:#F2CCF2;} +span#colorbox249{background-color:#F2CCF2;} +span#colorbox250{background-color:#F2CCF2;} +span#colorbox251{background-color:#F2CCF2;} +span#colorbox252{background-color:#F2CCF2;} +span#colorbox253{background-color:#F2CCF2;} +span#colorbox254{background-color:#F2CCF2;} +span#colorbox255{background-color:#F2CCF2;} +span#colorbox256{background-color:#F2CCF2;} +span#colorbox257{background-color:#F2CCF2;} +span#colorbox258{background-color:#F2CCF2;} +span#colorbox259{background-color:#F2CCF2;} +span#colorbox260{background-color:#F2CCF2;} +span#colorbox261{background-color:#F2CCF2;} +span#colorbox262{background-color:#F2CCF2;} +span#colorbox263{background-color:#F2CCF2;} +span#colorbox264{background-color:#F2CCF2;} +span#colorbox265{background-color:#F2CCF2;} +span#colorbox266{background-color:#F2CCF2;} +#mdframed-51{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox267{background-color:#F2CCF2;} +span#colorbox268{background-color:#F2CCF2;} +span#colorbox269{background-color:#F2CCF2;} +span#colorbox270{background-color:#F2CCF2;} +span#colorbox271{background-color:#F2CCF2;} +span#colorbox272{background-color:#F2CCF2;} +span#colorbox273{background-color:#F2CCF2;} +span#colorbox274{background-color:#F2CCF2;} +span#colorbox275{background-color:#F2CCF2;} +span#colorbox276{background-color:#F2CCF2;} +span#colorbox277{background-color:#F2CCF2;} +span#colorbox278{background-color:#F2CCF2;} +span#colorbox279{background-color:#F2CCF2;} +span#colorbox280{background-color:#F2CCF2;} +span#colorbox281{background-color:#F2CCF2;} +span#colorbox282{background-color:#F2CCF2;} +span#colorbox283{background-color:#F2CCF2;} +span#colorbox284{background-color:#F2CCF2;} +span#colorbox285{background-color:#F2CCF2;} +span#colorbox286{background-color:#F2CCF2;} +span#colorbox287{background-color:#F2CCF2;} +#mdframed-52{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox288{background-color:#F2CCF2;} +span#colorbox289{background-color:#F2CCF2;} +#mdframed-53{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox290{background-color:#F2CCF2;} +span#colorbox291{background-color:#F2CCF2;} +span#colorbox292{background-color:#F2CCF2;} +span#colorbox293{background-color:#F2CCF2;} +span#colorbox294{background-color:#F2CCF2;} +span#colorbox295{background-color:#F2CCF2;} +span#colorbox296{background-color:#F2CCF2;} +span#colorbox297{background-color:#F2CCF2;} +span#colorbox298{background-color:#F2CCF2;} +span#colorbox299{background-color:#F2CCF2;} +span#colorbox300{background-color:#F2CCF2;} +span#colorbox301{background-color:#F2CCF2;} +span#colorbox302{background-color:#F2CCF2;} +span#colorbox303{background-color:#F2CCF2;} +span#colorbox304{background-color:#F2CCF2;} +span#colorbox305{background-color:#F2CCF2;} +span#colorbox306{background-color:#F2CCF2;} +span#colorbox307{background-color:#F2CCF2;} +span#colorbox308{background-color:#F2CCF2;} +span#colorbox309{background-color:#F2CCF2;} +span#colorbox310{background-color:#F2CCF2;} +span#colorbox311{background-color:#F2CCF2;} +span#colorbox312{background-color:#F2CCF2;} +span#colorbox313{background-color:#F2CCF2;} +span#colorbox314{background-color:#F2CCF2;} +span#colorbox315{background-color:#F2CCF2;} +span#colorbox316{background-color:#F2CCF2;} +span#colorbox317{background-color:#F2CCF2;} +span#colorbox318{background-color:#F2CCF2;} +span#colorbox319{background-color:#F2CCF2;} +span#colorbox320{background-color:#F2CCF2;} +span#colorbox321{background-color:#F2CCF2;} +span#colorbox322{background-color:#F2CCF2;} +span#colorbox323{background-color:#F2CCF2;} +span#colorbox324{background-color:#F2CCF2;} +span#colorbox325{background-color:#F2CCF2;} +span#colorbox326{background-color:#F2CCF2;} +span#colorbox327{background-color:#F2CCF2;} +span#colorbox328{background-color:#F2CCF2;} +span#colorbox329{background-color:#F2CCF2;} +span#colorbox330{background-color:#F2CCF2;} +span#colorbox331{background-color:#F2CCF2;} +span#colorbox332{background-color:#F2CCF2;} +#mdframed-54{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +#mdframed-55{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +#mdframed-56{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox333{background-color:#F2CCF2;} +span#colorbox334{background-color:#F2CCF2;} +span#colorbox335{background-color:#F2CCF2;} +span#colorbox336{background-color:#F2CCF2;} +span#colorbox337{background-color:#F2CCF2;} +span#colorbox338{background-color:#F2CCF2;} +span#colorbox339{background-color:#F2CCF2;} +span#colorbox340{background-color:#F2CCF2;} +span#colorbox341{background-color:#F2CCF2;} +span#colorbox342{background-color:#F2CCF2;} +span#colorbox343{background-color:#F2CCF2;} +span#colorbox344{background-color:#F2CCF2;} +span#colorbox345{background-color:#F2CCF2;} +span#colorbox346{background-color:#F2CCF2;} +span#colorbox347{background-color:#F2CCF2;} +span#colorbox348{background-color:#F2CCF2;} +span#colorbox349{background-color:#F2CCF2;} +span#colorbox350{background-color:#F2CCF2;} +span#colorbox351{background-color:#F2CCF2;} +span#colorbox352{background-color:#F2CCF2;} +#mdframed-57{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +#mdframed-58{border:2.0pt solid #800080; background-color: #FFF2FF; color:#000000;} +span#colorbox353{background-color:#F2CCF2;} +span#colorbox354{background-color:#F2CCF2;} +span#colorbox355{background-color:#F2CCF2;} +span#colorbox356{background-color:#F2CCF2;} +span#colorbox357{background-color:#F2CCF2;} +span#colorbox358{background-color:#F2CCF2;} +span#colorbox359{background-color:#F2CCF2;} +span#colorbox360{background-color:#F2CCF2;} +span#colorbox361{background-color:#F2CCF2;} +span#colorbox362{background-color:#F2CCF2;} +span#colorbox363{background-color:#F2CCF2;} +span#colorbox364{background-color:#F2CCF2;} +span#colorbox365{background-color:#F2CCF2;} +span#colorbox366{background-color:#F2CCF2;} +span#colorbox367{background-color:#F2CCF2;} +span#colorbox368{background-color:#F2CCF2;} +span#colorbox369{background-color:#F2CCF2;} +span#colorbox370{background-color:#F2CCF2;} +span#colorbox371{background-color:#F2CCF2;} +span#colorbox372{background-color:#F2CCF2;} +span#colorbox373{background-color:#F2CCF2;} +span#colorbox374{background-color:#F2CCF2;} +span#colorbox375{background-color:#F2CCF2;} +#mdframed-59{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-60{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-61{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-62{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-63{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-64{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-65{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-66{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-67{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-68{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-69{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-70{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-71{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-72{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-73{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-74{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-75{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-76{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-77{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-78{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-79{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-80{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-81{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-82{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-83{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-84{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-85{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-86{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-87{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-88{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-89{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-90{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-91{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-92{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-93{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-94{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-95{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-96{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-97{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-98{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-99{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-100{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-101{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-102{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-103{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-104{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-105{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-106{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-107{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-108{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-109{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-110{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-111{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-112{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-113{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-114{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-115{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-116{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-117{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-118{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-119{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-120{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-121{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-122{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-123{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-124{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-125{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-126{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-127{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-128{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-129{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-130{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-131{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-132{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-133{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-134{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-135{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-136{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-137{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-138{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-139{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-140{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +#mdframed-141{border:2.0pt solid #FF991A; background-color: #FFF5E5; color:#000000;} +/* end css.sty */ + diff --git a/lammps-stable_29Aug2024/colvars-refman-lammps.html b/lammps-stable_29Aug2024/colvars-refman-lammps.html new file mode 100644 index 00000000..54e3d5d5 --- /dev/null +++ b/lammps-stable_29Aug2024/colvars-refman-lammps.html @@ -0,0 +1,5748 @@ + + + Collective Variables Module - Colvars Module - Reference Manual + + + + + + + +

+

+


+

COLLECTIVE VARIABLES MODULE
+

Reference manual for LAMMPS
+


Code version: 2024-06-04
+

Updated versions of this manual: [GROMACS] [LAMMPS] [NAMD] [Tinker-HP] [VMD]

+

Colvars logo
Alejandro Bernardin, Haochuan Chen, Jeffrey R. Comer, Giacomo Fiorin, Haohao Fu, Jérôme +Hénin, Axel Kohlmeyer, Fabrizio Marinelli, Hubert Santuz, Joshua V. Vermaas, Andrew D. +White +

(PDF version) + + +

+ +

+

+

Contents

+
+  1 Overview +
 2 Writing a Colvars configuration: a crash course +
 3 Enabling and controlling the Colvars module in LAMMPS +
  3.1 Units in the Colvars module +
  3.2 LAMMPS keywords +
  3.3 Using the scripting interface to control the Colvars module +
   3.3.1 Setting up the Colvars module +
   3.3.2 Loading and saving the Colvars state and other information +
   3.3.3 Accessing atomic data +
   3.3.4 Managing collective variables +
   3.3.5 Applying and analyzing forces on collective variables +
   3.3.6 Managing collective variable biases +
   3.3.7 Loading and saving the state of individual biases +
  3.4 Configuration syntax used by the Colvars module +
  3.5 Global keywords +
  3.6 Input state file +
   3.6.1 Restarting in LAMMPS. +
   3.6.2 Changing configuration upon restarting. +
  3.7 Output files +
  3.8 File formats +
   3.8.1 Configuration and state files. +
   3.8.2 Index (NDX) files +
   3.8.3 XYZ coordinate files +
   3.8.4 Grid files: multicolumn text format +
   3.8.5 Output trajectory files +
 4 Defining collective variables +
  4.1 Choosing a function +
  4.2 Treatment of periodic boundary conditions +
  4.3 Distances +
   4.3.1 distance: center-of-mass distance between two groups. +
   4.3.2 distanceZ: projection of a distance vector on an axis. +
   4.3.3 distanceXY: modulus of the projection of a distance vector on a plane. +
   4.3.4 distanceVec: distance vector between two groups. +
   4.3.5 distanceDir: distance unit vector between two groups. +
   4.3.6 distanceInv: mean distance between two groups of atoms. +
  4.4 Angles +
   4.4.1 angle: angle between three groups. +
   4.4.2 dipoleAngle: angle between two groups and dipole of a third group. +
   4.4.3 dihedral: torsional angle between four groups. +
   4.4.4 polarTheta: polar angle in spherical coordinates. +
   4.4.5 polarPhi: azimuthal angle in spherical coordinates. +
  4.5 Contacts +
   4.5.1 coordNum: coordination number between two groups. +
   4.5.2 selfCoordNum: coordination number between atoms within a group. +
   4.5.3 hBond: hydrogen bond between two atoms. +
  4.6 Collective metrics +
   4.6.1 rmsd: root mean square displacement (RMSD) from reference +positions. +
   4.6.2 Advanced usage of the rmsd component. +
   4.6.3 eigenvector: projection of the atomic coordinates on a vector. +
   4.6.4 gyration: radius of gyration of a group of atoms. +
   4.6.5 inertia: total moment of inertia of a group of atoms. +
   4.6.6 dipoleMagnitude: dipole magnitude of a group of atoms. +
   4.6.7 inertiaZ: total moment of inertia of a group of atoms around +a chosen axis. +
  4.7 Rotations +
   4.7.1 orientation: orientation from reference coordinates. +
   4.7.2 orientationAngle: angle of rotation from reference coordinates. +
   4.7.3 orientationProj: cosine of the angle of rotation from +reference coordinates. +
   4.7.4 spinAngle: angle of rotation around a given axis. +
   4.7.5 tilt: cosine of the rotation orthogonal to a given axis. +
   4.7.6 eulerPhi: Roll angle from references coordinates. +
   4.7.7 eulerTheta: Pitch angle from references coordinates. +
   4.7.8 eulerPsi: Yaw angle from references coordinates. +
  4.8 Raw data: building blocks for custom functions +
   4.8.1 cartesian: vector of atomic Cartesian coordinates. +
   4.8.2 distancePairs: set of pairwise distances between two groups. +
  4.9 Geometric path collective variables +
   4.9.1 gspath: progress along a path defined in atomic Cartesian +coordinate space. +
   4.9.2 gzpath: distance from a path defined in atomic Cartesian +coordinate space. +
   4.9.3 linearCombination: Helper CV to define a linear combination +of other CVs +
   4.9.4 customColvar: Helper CV to define a mathematical expression +as CV from other CVs +
   4.9.5 gspathCV: progress along a path defined in CV space. +
   4.9.6 gzpathCV: distance from a path defined in CV space. +
  4.10 Arithmetic path collective variables +
   4.10.1 aspathCV: progress along a path defined in CV space. +
   4.10.2 azpathCV: distance from a path defined in CV space. +
   4.10.3 aspath: progress along a path defined in atomic Cartesian +coordinate space. +
   4.10.4 azpath: distance from a path defined in atomic Cartesian +coordinate space. +
  4.11 Dense neural network in CV space (MLCV) +
  4.12 Shared keywords for all components +
  4.13 Periodic components +
  4.14 Non-scalar components +
   4.14.1 Calculating total forces +
  4.15 Linear and polynomial combinations of components +
  4.16 Custom functions +
  4.17 Defining grid parameters for a colvar +
  4.18 Trajectory output +
  4.19 Extended Lagrangian +
  4.20 Multiple time-step variables +
  4.21 Backward-compatibility +
  4.22 Statistical analysis +
 5 Selecting atoms +
  5.1 Atom selection keywords +
  5.2 Moving frame of reference. +
  5.3 Treatment of periodic boundary conditions. +
  5.4 Performance of a Colvars calculation based on group size. +
 6 Biasing and analysis methods +
  6.1 Thermodynamic integration +
  6.2 Adaptive Biasing Force +
   6.2.1 ABF requirements on collective variables +
   6.2.2 Parameters for ABF +
   6.2.3 Output files +
   6.2.4 Multidimensional free energy surfaces +
  6.3 Extended-system Adaptive Biasing Force (eABF) +
   6.3.1 CZAR estimator of the free energy +
  6.4 Adiabatic Bias Molecular Dynamics (ABMD) +
  6.5 Metadynamics +
   6.5.1 Treatment of the PMF boundaries +
   6.5.2 Required metadynamics keywords +
   6.5.3 Output files +
   6.5.4 Performance optimization +
   6.5.5 Ensemble-Biased Metadynamics +
   6.5.6 Well-tempered metadynamics +
   6.5.7 Multiple-walker metadynamics +
  6.6 Harmonic restraints +
   6.6.1 Moving restraints: steered molecular dynamics +
   6.6.2 Moving restraints: umbrella sampling +
   6.6.3 Changing force constant +
  6.7 Computing the work of a changing restraint +
  6.8 Harmonic wall restraints +
  6.9 Linear restraints +
  6.10 Adaptive Linear Bias/Experiment Directed Simulation +
  6.11 Multidimensional histograms +
   6.11.1 Defining grids for multidimensional histograms +
   6.11.2 Output options for multi-dimensional histograms +
   6.11.3 Histogramming vector variables +
  6.12 Probability distribution-restraints +
 7 fix_modify command-line interface: list of commands +
  7.1 Commands to manage the Colvars module +
  7.2 Commands to manage individual collective variables +
  7.3 Commands to manage individual biases +
 8 Syntax changes from older versions +
 9 Compilation notes +
+

+

+ +

+

1 Overview

+

+

In molecular dynamics simulations, it is often useful to reduce the large number of degrees of freedom +of a physical system into few parameters whose statistical distributions can be analyzed individually, or +used to define biasing potentials to alter the dynamics of the system in a controlled manner. These have +been called ‘order parameters', ‘collective variables', ‘(surrogate) reaction coordinates', and many other +terms. +

Here we use primarily the term ‘collective variable', often shortened to +colvar, to indicate any differentiable function of atomic Cartesian coordinates, +xi, with +i between +1 and +N, the +total number of atoms:

+ +ξ(t) = ξ(X(t)) = ξ (xi(t),xj(t),xk(t), ⁡),1 i,j,k ⁡ N +(1)
+

This manual documents the collective variables module (Colvars), a software that provides an implementation +for the functions ξ(X) +with a focus on flexibility, robustness and high performance. The module is designed to perform multiple +tasks concurrently during or after a simulation, the most common of which are:

+ +

Detailed explanations of the design of the Colvars module are provided in reference [1]. Please cite +this reference whenever publishing work that makes use of this module, alongside any other publications +for specific features being, according to the usage summary printed when running a Colvars-enabled MD +simulation or analysis. +

+

+ +

+

2 Writing a Colvars configuration: a crash course

+

+

The Colvars configuration is a plain text file or string that defines collective variables, biases, and +general parameters of the Colvars module. It is passed to the module using back-end-specific commands +documented in section 3. +

+

Example: steering two groups of atoms away from each other. + Now let us look at a complete, non-trivial configuration. Suppose that we want to run a steered MD +experiment where a small molecule is pulled away from a protein binding site. In Colvars terms, this is +done by applying a moving restraint to the distance between the two objects. The configuration will +contain two blocks, one defining the distance variable (see section 4 and 4.3.1), and the other the moving +harmonic restraint (6.6).

+
+

+

indexFile index.ndx
colvar {
  name dist
  distance {
    group1 { atomNumbersRange 42-55 }
    group2 { indexGroup C-alpha_15-30 }
  }
}

harmonic {
  colvars dist
  forceConstant 20.0
  centers 4.0         # initial distance
  targetCenters 15.0  # final distance
  targetNumSteps 500000
}

+
+

Reading this input in plain English: the variable here named dist consists in a distance +function between the centers of two groups: the ligand (atoms 42 to 55) and the +α-carbon +atoms of residues 15 to 30 in the protein (selected from the index group “C-alpha_15-30"). To + + +the “dist" variable, we apply a harmonic potential of force constant 20 energy unit/length +unit2, +initially centered around a value of 4 length unit, which will increase to 15 length unit over 500,000 +simulation steps. +

The atom selection keywords are detailed in section 5. If the selection is too complex to implement +only via internal keywords, an external index file may be created following the NDX format used in +GROMACS (see 3.8.2) or by using the group2ndx LAMMPS command. +

+

Example: using multiple variables and multiple biasing/analysis methods together. + A more complex example configuration is included below, showing how a variable +may be constructed by combining multiple existing functions, and how multiple +variables or multiple biases may be used concurrently. The colvar indicated below as +“d" +is defined as the difference between two distances (see 4.3): the first distance +(d1) is +taken between the center of mass of atoms 1 and 2 and that of atoms 3 to 5, the second +(d2) +between atom 7 and the center of mass of atoms 8 to 10 (see 5). The difference +d = d1 d2 is obtained by multiplying +the two by a coefficient C = +1 +or C = 1, respectively (see +4.15). The colvar called “c" +is the coordination number calculated between atoms 1 to 10 and atoms 11 to 20. A harmonic restraint (see 6.6) is +applied to both d and +c: to allow using the +same force constant K, +both d and +c are scaled by their +respective fluctuation widths wd +and wc. The +values of “c" +are also recorded throughout the simulation as a joint 2-dimensional histogram (see 6.11).

+
+

colvar {
  # difference of two distances
  name d 
  width 0.2  # estimated fluctuation width 
  distance {
    componentCoeff  1.0
    group1 { atomNumbers 1 2 }
    group2 { atomNumbers 3 4 5 }
  }
  distance {
    componentCoeff -1.0
    group1 { atomNumbers 7 }
    group2 { atomNumbers 8 9 10 }
  }
}

colvar {
  name c
  coordNum {
    cutoff 6.0
    group1 { atomNumbersRange  1-10 }
    group2 { atomNumbersRange 11-20 }
    tolerance 1.0e-6
    pairListFrequency 1000
  }
}

harmonic {
  colvars d c
  centers 3.0 4.0
  forceConstant 5.0
}

histogram {
  colvars c
}

+
+

+

+ +

+

3 Enabling and controlling the Colvars module in LAMMPS

+

+

Here, we document the syntax of the commands and parameters used to set up and use +the Colvars module in LAMMPS [2]. One of these parameters is the configuration file or the +configuration text for the module itself, whose syntax is described in 3.4 and in the following +sections. +

+ +

+

3.1 Units in the Colvars module

+

+

The “internal units" of the Colvars module are the units in which values are expressed in the +configuration file, and in which collective variable values, energies, etc. are expressed in the output and +colvars trajectory files. Generally the Colvars module uses internally the same units as its back-end +MD engine, with the exception of VMD, where different unit sets are supported to allow for +easy setup, visualization and analysis of Colvars simulations performed with any simulation +engine. +

Note that angles are expressed in degrees, and derived quantities such as force constants are based +on degrees as well. Some colvar components have default values, expressed in Ångström +(Å) in this documentation. They are converted to the current length unit, if different from Å. +Atomic coordinates read from XYZ files (and PDB files where applicable) are expected to be +expressed in Ångström, no matter what unit system is in use by the back-end (LAMMPS) or the +Colvars Module. They are converted internally to the current length unit as needed. Note that +force constants in harmonic and harmonicWalls biases (6.6) are rescaled according to the +width parameter of colvars, so that they are formally in energy units, although if width is +given its default value of 1.0, force constants are effectively expressed in energy unit/(colvar +unit)2. +

To avoid errors due to reading configuration files written in a different unit system, it can be specified +within the input: +

+ + +

+

3.2 LAMMPS keywords

+

+

To enable a Colvars-based calculation, the following line must be added to the LAMMPS configuration +file:

+
+

fix Colvars all colvars configfile [keyword value pairs ...] 

+
+

where the fix ID is here set to the string “Colvars", because there can only be one instance of fix +colvars in a LAMMPS run. +

The value of the configfile keyword is the name of the configuration file for the Colvars module. You +may also provide the lowercase string “none" to create an empty module, and define the configuration via +fix_modify (see 3.3). +

Other optional keywords for fix colvars are: +

+ +

All of the above keywords except for the name of the configuration file may also be given (or +overridden) using fix_modify, as well as new Colvars configuration files (see 3.3 for more +details). +

+ +

+

3.3 Using the scripting interface to control the Colvars module

+

+

After the first initialization of the Colvars module, the internal state of Colvars objects may +be queried or modified in a LAMMPS script (here, “Colvars" is the ID of the fix colvars +instance):

+
+

fix_modify Colvars  <method > arg1 arg2 ...
+

+
+

where <method > +is the name of a specific procedure and arg1, arg2, …are its required and/or optional arguments. +

Each fix_modify command may be used in either one of two ways: +

    +
  1. Provide an updated value for the parameters of the fix listed in 3.2: this behavior is similar to that + of several other LAMMPS fix styles, and follows the same argument parsing rules. For example, + multiple keywords can be provided together:
    +

    fix_modify Colvars seed 111111 tstat NPT 

    +
    +
  2. +
  3. Use one of the scripting functions described in this section; the arguments provided as strings are + passed to Colvars. LAMMPS variables referenced by their string representation, “${variable}", will + be expanded immediately. Additionally, variable expansion will also happen within quotes, similar to + what the mdi command provides in a LAMMPS script: this feature makes it possible + to use the values of certain LAMMPS variables in Colvars configuration strings (see + 3.3.1).
    +

    variable freq index 10000
    dump myDump all atom/zstd ${freq} dump.atom.zstd
    fix_modify Colvars config "colvarsTrajFrequency ${freq}"

    +
    +
+

fix_modify can be run on a previously created instance of fix colvars at any time. However, +because the fix is not fully initialized until the beginning of the next simulation step, only the variables and +biases that were created prior to the most recent run or minimize command will be accessible. This fact +is true even if a Colvars configuration file that defines those variables and biases was already given in the +LAMMPS script. Should you want to trigger an immediate initialization of the Colvars module, consider +running “run 0". +

In the remainder of this section, the most frequently used commands of the Colvars scripting interface +are discussed and exemplified. For a full list of scripting commands available, see section 7. +
+

+ +

+
3.3.1 Setting up the Colvars module
+

+

To define new collective variables and/or biases for immediate use in the current session, +configuration can be loaded from an external configuration file:

+
+

fix_modify Colvars configfile "colvars-file.in" 

+
+

This can in principle be called at any time, if only flags internal to Colvars are being modified. In +practice, when new atoms or any new atomic properties (e.g. total forces) are being requested, +initialization steps will be required that are not carried out during a simulation. Therefore, it is generally +good practice in a simulation to change the Colvars configuration outside the scope between segments of +the same computation. +

To load the configuration directly from a string the “config" method may be used:

+
+

fix_modify Colvars config "keyword { ... }" 

+
+

This method is particularly useful to dynamically define the Colvars configuration within a LAMMPS script. +For example, when running an ensemble of umbrella sampling simulations in LAMMPS, it may be +convenient to use an identical script and define the specific window through environment +variables. +

In the following example, the environment variable “SLURM_ARRAY_TASK_ID" is set in a Slurm array job +to increasing values starting at 0. The value of this variable is used to define the window's numeric index, +and the umbrella restraint center beginning at 2.00 for the first window, and increasing in increments of +0.25 for all other windows:

+
+

variable window getenv SLURM_ARRAY_TASK_ID
fix_modify Colvars config """
harmonic {
  name us_${window}
  colvars xi
  centers [expr 2.0 + 0.25 * ${window}]
  ...
}"""

+
+ +

+
3.3.2 Loading and saving the Colvars state and other information
+

+

After a configuration is fully defined, the “load" method may be used to load a state file from a +previous simulation that contains e.g. data from history-dependent biases), to either continue that +simulation or analyze its results:

+
+

fix_modify Colvars load " <oldjob >.colvars.state"
+

+
+

or more simply using the prefix of the state file itself:

+
+

fix_modify Colvars load " <oldjob >"
+

+
+

Note that the Colvars state is already loaded automatically as part of the LAMMPS restart file, when +this is read via the LAMMPS read_restart command; the “load" method allows to load a different state +file after the fact. +

The “save" method, analogous to “load", allows to save all restart information to a state file. This +is normally not required during a simulation if colvarsRestartFrequency is defined (either +directly or indirectly by the LAMMPS restart frequency). Because not only a state file (used to +continue simulations) but also other data files (used to analyze the trajectory) are written, it is +generally recommended to call the save method using a prefix, rather than a complete file +name:

+
+

fix_modify Colvars save " <job >"
+

+
+ +

+
3.3.3 Accessing atomic data
+

+

For computational efficiency the Colvars module keeps internal copies of the numeric IDs, masses, +charges, positions, and optionally total forces of the atoms requested for a Colvars computation. At each +simulation step, up-to-date versions of these properties are copied from the central memory of +LAMMPS into the internal memory of the Colvars module. In a post-processing workflow or +outside a simulation (e.g. when using VMD), this copy can be carried out as part of the update +method:

+
+

fix_modify Colvars update   

+
+

which also performs the (re-)computation of all variables and biases defined in Colvars. + + +

For example, the current sequence of numeric IDs of the atoms processed by Colvars can be obtained +as:

+
+

fix_modify Colvars getatomids   

+
+

and their current positions as:

+
+

fix_modify Colvars getatompositions   

+
+

This may prove useful to test the correctness of the coordinates passed to Colvars, particularly in regard +to periodic boundary conditions (5.3). There is currently no mechanism to modify the above fields via the +scripting interface, but such capability will be added in the future. +

While running a simulation, or when setting one up in VMD, it is possible to examine all the forces that +were last applied by Colvars to the atoms, or are about to be applied:

+
+

fix_modify Colvars getatomappliedforces   

+
+

where the length and order of this sequence matches that provided by the getatomids method. A simpler +way of testing the stability of a Colvars configuration before or during a simulation makes use of +aggregated data, such as the energy:

+
+

fix_modify Colvars getenergy   

+
+

the root-mean-square of the Colvars applied forces:

+
+

fix_modify Colvars getatomappliedforcesrms   

+
+

or the maximum norm of the applied forces:

+
+

fix_modify Colvars getatomappliedforcesmax   

+
+

which can be matched to a specific atom via its numeric ID obtained as:

+
+

fix_modify Colvars getatomappliedforcesmaxid   

+
+

See 7.1 for a complete list of scripting commands used to manage atomic data and runtime +parameters of the Colvars module. +

+ +

+
3.3.4 Managing collective variables
+

+

After one or more collective variables are defined, they can be accessed with the following +syntax.

+
+

fix_modify Colvars colvar " <name > <method > arg1 arg2 ...
+

+
+

where “ <name >" +is the name of the variable. +

For example, to recompute the collective variable “xi" after a change in its parameters, the following +command can be used:

+
+

fix_modify Colvars colvar "xi" update  

+
+

This ordinarily is not needed during a simulation run, where all variables are recomputed at every step +(along with biasing forces acting on them). However, when analyzing an existing trajectory, e.g. in VMD, a +call to update is generally required. +

While in all typical cases all configuration of the variables is done with the “config" or “configfile" +methods, a limited set of changes can be enacted at runtime using:

+
+

fix_modify Colvars colvar " <name >" modifycvcs arg1 arg2 ...
+

+
+

where each argument is a string passed to the function or functions that are used to compute the variable, +and are called colvar components, or CVCs (4.1). For example, a variable “DeltaZ" made of a single +“distanceZ" component can be made periodic with a period equal to the unit cell dimension along the +Z-axis:

+
+

fix_modify Colvars colvar "DeltaZ" modifycvcs "period ${Lz}" 

+
+

Please note that this option is currently limited to changing the values of the polynomial superposition +parameters componentCoeff, or of the componentExp to update on the fly, of period, wrapAround or +forceNoPBC options for components where it is relevant. Furthermore, because the call above uses an +immediate expansion of the variable “${Lz}", its value will not be updated during a constant-pressure +simulation. +

If the variable is computed using many components, it is possible to selectively turn some of them on +or off:

+
+

fix_modify Colvars colvar " <name >" cvcflags  <flags >
+

+
+

where “ <flags >" +is a list of 0/1 values, one per component. +

Important: None of the changes enacted by the “modifycvcs" or “cvcflags" methods will be saved to +state files, and will be lost when restarting a simulation, deleting the corresponding collective variable, or +resetting the module with the “reset" method. + + +

+ +

+
3.3.5 Applying and analyzing forces on collective variables
+

+

As soon as a colvar “xi" and its associated biasing potentials are up to date (i.e. during a MD run, or +after the respective “update" methods have been called), the force applied onto the colvar is known and +may be accessed through the getappliedforce method:

+
+

fix_modify Colvars colvar "xi" getappliedforce  

+
+

See also the use of the outputAppliedForce option to have this force be saved to file during a +simulation. +

Aside from the biasing methods already implemented within Colvars (6) this force may be incremented +ad hoc:

+
+

fix_modify Colvars colvar "xi" addforce  <force >
+

+
+

where “ <force >" +is a scalar or a vector (depending on the type of variable “xi"). Although this would offer in principle a way +to add custom forces to a variable, fix_modify is executed outside the run or minimize commands, and +the given force will be reset during a simulation. +

For certain types of variable, the force applied directly on a colvar may be combined with those acting +indirectly on it via the interatomic force field, making up the total force. When the outputTotalForce +keyword is enabled, or when a biasing method that makes explicit use of the total force is enabled, the +total force may be obtained as:

+
+

fix_modify Colvars colvar "xi" gettotalforce  

+
+

Note that not all types of variable support total-force computation, and the value of the total force may not +be available immediately within the same simulation step: see the documentation of outputTotalForce +for more details. +

See 7.2 for a complete list of scripting commands used to manage collective variables. +

+ +

+
3.3.6 Managing collective variable biases
+

+

Because biases depend only upon data internal to the Colvars module (i.e. they do not need atomic +coordinates from LAMMPS), it is generally easy to create them or update their configuration at any time. +For example, given the most current value of the variable “xi", an already-defined harmonic restraint on it +named “h_xi" can be updated as:

+
+

fix_modify Colvars bias "h_xi" update  

+
+

During a running simulation this step is not needed, because an automatic update of each bias is already +carried out. +

+ +

+
3.3.7 Loading and saving the state of individual biases
+

+

Some types of bias are history-dependent, and the magnitude of their forces depends not only on the +values of their corresponding variables, but also on previous simulation history. It is thus useful to +load information from a state file that contains information specifically for one bias only, for +example:

+
+

fix_modify Colvars bias "metadynamics1" load "old.colvars.state" 

+
+

or alternatively, using the prefix of the file instead of its full name:

+
+

fix_modify Colvars bias "metadynamics1" load "old" 

+
+

A corresponding “save" function is also available:

+
+

fix_modify Colvars bias "metadynamics1" save "new" 

+
+

Please note that the file above must contain only the state information for that particular bias: loading a +state file for the whole module is not allowed. +

This pair of functions is also used internally by Colvars to implement e.g. multiple-walker +metadynamics (6.5.7), but they can be called from a scripted function to implement alternative coupling +schemes. +

See 7.3 for a complete list of scripting commands used to manage biases. +

+ +

+

3.4 Configuration syntax used by the Colvars module

+

+

Configuration for the Colvars module is passed using an external file. Configuration lines follow the +format “keyword value" or “keyword { ... }", where the keyword and its value must be separated by +one or more space characters. The following formatting rules apply: +

+ + +

+

3.5 Global keywords

+

+

The following keywords are available in the global context of the Colvars configuration, i.e. they are +not nested inside other keywords:

+ + +

+

3.6 Input state file

+

+

Several of the sampling methods implemented in Colvars are time- or history-dependent, i.e. they +work by accumulating data as a simulation progresses, and use these data to determine their biasing +forces. If the simulation engine uses a checkpoint or restart file (as GROMACS and LAMMPS do), any +data needed by Colvars are embedded into that file. Otherwise, a dedicated state file can be loaded into +Colvars directly. +

When a dedicated Colvars state file is used, it may be in either one of two formats:

+ +

In either format, the state file contains accumulated data as well as the step number at the end of the +run. The step number read from a state file overrides any value that LAMMPS provides, and will be +incremented if the simulation proceeds. This means that the step number used internally by Colvars may +not always match the step number reported by LAMMPS. +

+ +

+
3.6.1 Restarting in LAMMPS.
+

For continuing a Colvars-based simulation, the recommended method is using the standard LAMMPS +read_restart command, which reads the Colvars state data from the LAMMPS restart file (in binary +format). +
+

read_restart filename 

+
+

Alternatively, restarting from a Colvars-specific state file is also possible by providing the input +keyword to the fix colvars command:

+
+

fix Colvars all colvars configfile input input_prefix 

+
+

When the “input" keyword is used, the contents of the file + <input_prefix >.colvar.state +override the information read from the LAMMPS restart file. Finally, a state file may also be loaded after +initialization through the “fix_modify" command:

+
+

fix_modify Colvars input new_input_prefix 

+
+ +

+
3.6.2 Changing configuration upon restarting.
+

+

In some cases, it is useful to modify the configuration of variables or biases between consecutive runs, +for example by adding or removing a restraint. Some special provisions will happen in that case. When a +state file is loaded, no information is available about any newly added variable or bias, which will +thus remain uninitialized until the first compute step. Conversely, any information that the +state file may contain about variables or biases that are no longer defined will be silently +ignored. Please note that these checks are performed based only on the names of variables and +biases: it is your responsibility to ensure that these names have consistent definitions between +runs. +

The flexibility just described carries some limitations: namely, it is only supported when reading +text-format Colvars state files. Instead, restarting from binary files (such as the LAMMPS restart file) after +a configuration change will trigger an error. It is also important to remind that when switching to a different +build of LAMMPS, the binary format may change slightly, even if the release version is the +same. + + +

To work around the potential issues just described, a text-format Colvars state file should be loaded. +This can be achieved by providing an explicit input keyword when initializing the Colvars fix (see +3.2), which will instruct Colvars to use the given filename, instead of the LAMMPS restart file. +Furthermore, the fix_modify scripting command allows to load a Colvars file after initialization +(3.3.2). +

+ +

+

3.7 Output files

+

+

When the output prefix output is defined, the following output files are written during a simulation +run: +

+ + +

+

3.8 File formats

+

+

This section summarizes the file formats of various files that Colvars may be reading or +writing. +

+ +

+
3.8.1 Configuration and state files.
+

+

Configuration files are text files that are generally read as input by LAMMPS. Starting from version +2017-02-01, changes in newline encodings are handled transparently, i.e. it is possible to typeset a +configuration file in Windows (CR-LF newlines) and then use it with Linux or macOS (LF-only +newlines). +

Formatted state files, although not written manually, follow otherwise the same text format as +configuration files. Binary state files can only be read by the Colvars code itself. +

+ +

+
3.8.2 Index (NDX) files
+

+

For atom selections that cannot be specified only by using internal Colvars keywords, external index +files may also be used following the NDX format used in GROMACS: + + +

+
+

[ group_1_name ]
  i1  i2  i3  i4  ...
  ...             ...  iN
[ group_2_name ]
  ...

+
+

where i1 through iN are 1-based indices. Each group name may not contain spaces or tabs: otherwise, a +parsing error will be raised. +

Multiple index files may be provided to Colvars, each using the keyword indexFile. Two index files +may contain groups with the same names, however these must also represent identical atom selections, +i.e. the same sequence of indices including order. +

Other than with GROMACS, an index group may also be generated from the VMD command-line +interface, using the helper function write_index_group provided in the colvartools folder:

+
+

source colvartools/write_index_group.tcl
set sel [atomselect top "resname XXX and not hydrogen"]
write_index_group indexfile.ndx $sel "Ligand"

+
+

In LAMMPS, NDX files may also be generated from internal groups via the group2ndx +command. +

+ +

+
3.8.3 XYZ coordinate files
+

XYZ coordinate files are text files with the extension “.xyz". They are read by the Colvars module using +an internal reader, and expect the following format: +

+ + + + +
N
Comment line
E +1 x1 y1 z1
E2 x2 y2 z2
EN xN yN zN
+
+

where N is the number of atomic +coordinates in the file and Ei is +the chemical element of the i-th +atom. Because Ei +is not used in Colvars, any string that does not contain tabs or spaces is acceptable. +

Note: all XYZ coordinates are assumed to be expressed in Å units, regardless of the units currently +used by LAMMPS. +

An XYZ file may contain either one of the following scenarios: + + +

    +
  1. The file contains as many coordinates as the atoms that they are being read for: all + coordinates will be read from the file following the same order as the atoms appear in the + selection generated using the keywords listed in section 5. (Note that the order is guaranteed + only if a single type of selection keyword is used one or more times, and not guaranteed + when different types of selection keywords are used.) +
  2. +
  3. The file contains more coordinates than needed, and it is assumed to contain coordinates + for the entire system: only coordinates that match the numeric indices of the selected atoms + are read, in order of increasing number.
+

XYZ-file coordinates are read directly by Colvars and stored internally as double-precision floating +point numbers. +

+ +

+
3.8.4 Grid files: multicolumn text format
+

+

Many simulation methods and analysis tools write files that contain functions of the collective variables +tabulated on a grid (e.g. potentials of mean force or multidimensional histograms) for the purpose of +analyzing results. Such files are produced by ABF (6.2), metadynamics (6.5), multidimensional +histograms (6.11), as well as any restraint with optional thermodynamic integration support +(6.1). +

In some cases, these files may also be read as input of a new simulation. Suitable input files for +this purpose are typically generated as output files of previous simulations, or directly by +the user in the specific case of ensemble-biased metadynamics (6.5.5). This section +explains the “multicolumn" format used by these files. For a multidimensional function +f(ξ1, +ξ2, +…) the +multicolumn grid format is defined as follows:
+

+
+ + + + + + +
# Ncv
# min(ξ1) width(ξ1) npoints(ξ1) periodic(ξ1)
# min(ξ2) width(ξ2) npoints(ξ2) periodic(ξ2)
#
# min(ξNcv) width(ξNcv) npoints(ξNcv) periodic(ξNcv)
ξ11 ξ21 ξNcv1 f(ξ11, ξ21, …, ξNcv1)
ξ11 ξ21 ξNcv2 f(ξ11, ξ21, …, ξNcv2)
+
+

Lines beginning with the character “#" are the header of the file. +Ncv +is the number of collective variables sampled by the grid. For each variable +ξi, +min(ξi) +is the lowest value sampled by the grid (i.e. the left-most boundary of the grid along +ξi), +width(ξi) is the width of each +grid step along ξi, +npoints(ξi) is the number +of points and periodic(ξi) +is a flag whose value is 1 or 0 depending on whether the grid is periodic along +ξi. In +most situations:

+ +

How the grid's boundaries affect the sequence of points depends on how the contents of the file were +computed. In many cases, such as histograms and PMFs computed by metadynamics (6.5.5), the values +of ξi +in the first few columns correspond to the midpoints of the corresponding bins, +i.e. ξ11 = min(ξi)+width(ξi)2. +However, there is a slightly different format in PMF files computed by ABF (6.2) or +other biases that use thermodynamic integration (6.1). In these cases, it is free-energy +gradients that are accumulated on an (npoints)-long grid along each variable +ξ: after these +gradients are integrated, the resulting PMF is discretized on a slightly larger grid with (npoints+1) points +along ξ +(unless the interval is periodic). Therefore, the grid's outer edges extend by +width(ξi)2 +above and below the specified boundaries, so that for instance +min(ξi) in the header appears +to be shifted back by width(ξi)2 + + +compared to what would be expected. Please keep this difference in mind when comparing PMFs +computed by different methods. +

After the header, the rest of the file contains values of the tabulated function +f(ξ1, +ξ2, +…ξNcv), one for each line. +The first Ncv columns +contain values of ξ1, +ξ2, +…ξNcv and the last column contains +the value of the function f. +Points are sorted in ascending order with the fastest-changing values at the right (“C-style" order). Each sweep of the +right-most variable ξNcv +is terminated by an empty line. For two dimensional grid files, this allows quick visualization by programs +such as GNUplot.
+

Example 1: multicolumn text file for a one-dimensional histogram with lowerBoundary = 15, +upperBoundary = 48 and width = 0.1. +

+
+ + + + +
# 1
# 15 0.1 330 0
15.05 6.14012e-07
15.15 7.47644e-07
47.85 1.65944e-06
47.95 1.46712e-06
+

Example 2: multicolumn text file for a two-dimensional histogram of two dihedral angles (periodic interval +with 6 +bins): +

+
+ + + + + +
# 2
# -180.0 6.0 30 1
# -180.0 6.0 30 1
-177.0 -177.0 8.97117e-06
-177.0 -171.0 1.53525e-06
-177.0 177.0 2.442956-06
-171.0 -177.0 2.04702e-05
+ +

+
3.8.5 Output trajectory files
+

+

The Colvars trajectory file (with a suffix .colvars.traj) is a plain text file (scientific +notation with 14-digit precision) whose columns represent quantities such as colvar +values, applied forces, or individual restraints' energies. Under most scenarios, plotting +or analyzing this file is straightforward: for example, the following contains a variable +“A" and the energy +of a restraint “rA":

+
+

#       step   A                     E_rA
           0    1.42467449615693e+01  6.30982865292123e+02
         100    1.42282559728026e+01  6.20640585041317e+02

+
+

Occasionally, if the Colvars configuration is changed mid-run certain quantities may be +added or removed, changing the column layout. Labels in comment lines can assist in such +cases: for example, consider the trajectory above with the addition of a second variable, +“B", after +10,000 steps:

+
+

#       step   A                     E_rA
           0    1.42467449615693e+01  6.30982865292123e+02
         100    1.42282559728026e+01  6.20640585041317e+02

#       step   A                     B                     E_rA              
       10000    1.38136915830229e+01  9.99574098859265e-01  4.11184644791030e+02
       10100    1.36437184346326e+01  9.99574091957314e-01  3.37726286543895e+02 +

+
+

Analyzing the above file with standard tools is possible, but laborious: a convenience script is provided +for this and related purposes. It may be used either as a command-line tool or as a Python +module:

+
+

>>> from plot_colvars_traj import Colvars_traj
>>> traj = Colvars_traj('test.colvars.traj')
>>> print(traj['A'].steps, traj['A'].values)
[    0   100  ...  10000 10100] [14.246745 14.228256 ... 13.813692 13.643718]
>>> print(traj['B'].steps, traj['B'].values)
[10000 10100] [0.999574  0.9995741]

+
+

+

+ +

+

4 Defining collective variables

+

+

A collective variable is defined by the keyword colvar followed by its configuration options contained +within curly braces:

+
+

colvar {
  name xi
   <other options >
  function_name {
     <parameters >
     <atom selection >
  }
}

+
+

There are multiple ways of defining a variable:

+ +

Choosing a component (function) is the only parameter strictly required to define a collective variable. It is +also highly recommended to specify a name for the variable:

+ + +

+

4.1 Choosing a function

+

+

In this context, the function that computes a colvar is called a component. A component's choice +and definition consists of including in the variable's configuration a keyword indicating the +type of function (e.g. rmsd), followed by a definition block specifying the atoms involved (see +5) and any additional parameters (cutoffs, “reference" values, …). At least one component +must be chosen to define a variable: if none of the keywords listed below is found, an error is +raised. +

The following components implement functions with a scalar value (i.e. a real number): +

+ +

Some components do not return scalar, but vector values:

+ +

The types of components used in a colvar (scalar or not) determine the properties of that colvar, and +particularly which biasing or analysis methods can be applied. +

What if “X" is not listed? If a function type is not available on this list, it may be possible to +define it as a polynomial superposition of existing ones (see 4.15), a custom function (see +4.16). +

In the rest of this section, all available component types are listed, along with their physical units and +their ranges of values, if limited. Such ranges are often used to define automatically default sampling +intervals, for example by setting the parameters lowerBoundary and upperBoundary in the parent +colvar. +

For each type of component, the available configurations keywords are listed: when two components +share certain keywords, the second component references to the documentation of the first one that uses +that keyword. The very few keywords that are available for all types of components are listed in a separate +section 4.12. +

+ +

+

4.2 Treatment of periodic boundary conditions

+

+

In all colvar components described below, the following rules apply concerning periodic boundary +conditions (PBCs): +

    +
  1. Distance vectors between two coordinates di,j = (x1 x2), + are calculated following the minimum-image convention by default, unless forceNoPBC is + enabled. (x1 + and x2 + may be either individual atomic coordinates, or centers of mass of two groups.) + + +
  2. +
  3. For all other functions of individual atomic coordinates, f (x1,x2, &ApplyFunction;), + it is assumed that all atoms that are part of the same group are in the same periodic unit cell + (see 5.3).
+ + +

+

4.3 Distances

+

+ +

+
4.3.1 distance: center-of-mass distance between two groups.
+

+

The distance {...} block defines a distance component between the two atom groups, group1 and +group2. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

The value returned is a positive number (in length unit), ranging from +0 to the +largest possible interatomic distance within the chosen boundary conditions (with PBCs, the minimum +image convention is used unless the forceNoPBC option is set). +

+ +

+
4.3.2 distanceZ: projection of a distance vector on an axis.
+

+

The distanceZ {...} block defines a distance projection component, which can be seen as +measuring the distance between two groups projected onto an axis, or the position of a group along such +an axis. The axis can be defined using either one reference group and a constant vector, or dynamically +based on two reference groups. One of the groups can be set to a dummy atom to allow the use of an +absolute Cartesian coordinate. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

This component returns a number (in length unit) whose range is determined by the chosen boundary conditions. For +instance, if the z +axis is used in a simulation with periodic boundaries, the returned value ranges between +bz2 and +bz2, where +bz is the box +length along z +(this behavior is disabled if forceNoPBC is set). +

+ +

+
4.3.3 distanceXY: modulus of the projection of a distance vector on a plane.
+

+

The distanceXY {...} block defines a distance projected on a plane, and accepts the same +keywords as the component distanceZ, i.e. main, ref, either ref2 or axis, and oneSiteTotalForce. It +returns the norm of the projection of the distance vector between main and ref onto the plane orthogonal +to the axis. The axis is defined using the axis parameter or as the vector joining ref and ref2 (see +distanceZ above). +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.3.4 distanceVec: distance vector between two groups.
+

+

The distanceVec component computes the 3-dimensional vector joining the centers of +mass of group1 and group2. Its values are therefore multi-dimensional and are subject to the +restrictions listed in 4.14. Moreover, when computing differences between two different values of +a distanceVec variable the minimum-image convention is assumed (unless forceNoPBC is +enabled). +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.3.5 distanceDir: distance unit vector between two groups.
+

+

The distanceDir {...} block defines a distance unit vector component, which accepts the same +keywords as the component distance: group1, group2, and forceNoPBC. It returns a 3-dimensional unit +vector d = (dx,dy,dz), +with |d| = 1. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.3.6 distanceInv: mean distance between two groups of atoms.
+

+

The distanceInv {...} block defines a generalized mean distance between +two groups of atoms 1 and 2, where each distance is taken to the power +n:

+ + +d1,2[n] = ( 1 +N1N2i,jdijn)1n +(2)
+

where dij is the +distance between atoms i +and j in groups 1 and +2 respectively, and n +is an even integer. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

This component returns a number ranging from 0 +to the largest possible distance within the chosen boundary conditions. +

+ +

+

4.4 Angles

+

+ +

+
4.4.1 angle: angle between three groups.
+

+

The angle {...} block defines an angle, and contains the three blocks group1, group2 +and group3, defining the three groups. It returns an angle (in degrees) within the interval +[0 : 180]. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.4.2 dipoleAngle: angle between two groups and dipole of a third group.
+

+

The dipoleAngle {...} block defines an angle, and contains the three blocks group1, group2 and group3, +defining the three groups, being group1 the group where dipole is calculated. It returns an angle (in degrees) within +the interval [0 : 180]. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.4.3 dihedral: torsional angle between four groups.
+

+

The dihedral {...} block defines a torsional angle, and contains the blocks group1, group2, +group3 and group4, defining the four groups. It returns an angle (in degrees) within the interval +[180 : 180]. The +Colvars module calculates all the distances between two angles taking into account periodicity. For +instance, reference values for restraints or range boundaries can be defined by using any real number of +choice. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.4.4 polarTheta: polar angle in spherical coordinates.
+

+

The polarTheta {...} block defines the polar angle in spherical coordinates, for the center of mass +of a group of atoms described by the block atoms. It returns an angle (in degrees) within the interval +[0 : 180]. To +obtain spherical coordinates in a frame of reference tied to another group of atoms, use the fittingGroup +(5.2) option within the atoms block. An example is provided in file examples/11_polar_angles.in of the +Colvars public repository. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.4.5 polarPhi: azimuthal angle in spherical coordinates.
+

+

The polarPhi {...} block defines the azimuthal angle in spherical coordinates, for the center of +mass of a group of atoms described by the block atoms. It returns an angle (in degrees) within the interval +[180 : 180]. The +Colvars module calculates all the distances between two angles taking into account periodicity. For +instance, reference values for restraints or range boundaries can be defined by using any real number +of choice. To obtain spherical coordinates in a frame of reference tied to another group of +atoms, use the fittingGroup (5.2) option within the atoms block. An example is provided in file +examples/11_polar_angles.in of the Colvars public repository. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+

4.5 Contacts

+

+ +

+
4.5.1 coordNum: coordination number between two groups.
+

+

The coordNum {...} block defines a coordination number (or number of contacts), which calculates the +function (1(dd0)n)(1(dd0)m), where +d0 is the “cutoff" +distance, and n +and m are +exponents that can control its long range behavior and stiffness [3]. This function is summed over all pairs +of atoms in group1 and group2:

+ +C(group1,group2) = igroup1jgroup21(|xixj|d0)n +1(|xixj|d0)m +(3)
+

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

This component returns a dimensionless number, which ranges from +approximately 0 (all interatomic distances are much larger than the cutoff) to +Ngroup1×Ngroup2 (all distances are less +than the cutoff), or Ngroup1 +if group2CenterOnly is used. For performance reasons, at least one of group1 and group2 should be of +limited size or group2CenterOnly should be used: the cost of the loop over all pairs grows as +Ngroup1×Ngroup2. Setting +tolerance > 0 +ameliorates this to some degree, although every pair is still checked to regenerate the pair +list. +

+ +

+
4.5.2 selfCoordNum: coordination number between atoms within a group.
+

+

The selfCoordNum {...} block defines a coordination number similarly to the component coordNum, +but the function is summed over atom pairs within group1:

+ +C(group1) = igroup1j>i 1(|xixj|d0)n +1(|xixj|d0)m +(4)
+

The keywords accepted by selfCoordNum are a subset of those accepted by coordNum, namely group1 +(here defining all of the atoms to be considered), cutoff, expNumer, and expDenom. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

This component returns a dimensionless number, which ranges from +approximately 0 (all interatomic distances much larger than the cutoff) to +Ngroup1×(Ngroup11)2 (all distances +within the cutoff). For performance reasons, group1 should be of limited size, because the cost of the loop over all +pairs grows as Ngroup12. +

+ +

+
4.5.3 hBond: hydrogen bond between two atoms.
+

+

The hBond {...} block defines a hydrogen bond, implemented as a coordination number (eq. 3) +between the donor and the acceptor atoms. Therefore, it accepts the same options cutoff +(with a different default value of 3.3 Å), expNumer (with a default value of 6) and expDenom +(with a default value of 8). Unlike coordNum, it requires two atom numbers, acceptor and +donor, to be defined. It returns a dimensionless number, with values between 0 (acceptor +and donor far outside the cutoff distance) and 1 (acceptor and donor much closer than the +cutoff). +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+

4.6 Collective metrics

+

+ +

+
4.6.1 rmsd: root mean square displacement (RMSD) from reference positions.
+

+

The block rmsd {...} defines the root mean square replacement (RMSD) of a +group of atoms with respect to a reference structure. For each set of coordinates +{x1(t),x2(t), &ApplyFunction;xN(t)}, +the colvar component rmsd calculates the optimal rotation +U{xi(t)}{xi(ref)} that best superimposes +the coordinates {xi(t)} onto a set +of reference coordinates {xi(ref)}. +Both the current and the reference coordinates are centered on their centers of geometry, +xcog(t) and +xcog(ref). The +root mean square displacement is then defined as:

+ +RMSD ( {xi (t)}, {xi(ref)}) = 1 +Ni=1N |U (xi(t)xcog(t)) (xi(ref) xcog(ref))|2 +(5)
+

The optimal rotation U{xi(t)}{xi(ref)} +is calculated within the formalism developed in reference [4], which guarantees a continuous dependence +of U{xi(t)}{xi(ref)} with +respect to {xi(t)}. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

This component returns a positive real number (in length unit). +

+ +

+
4.6.2 Advanced usage of the rmsd component.
+

In the standard usage as described above, the rmsd component calculates a minimum RMSD, that is, +current coordinates are optimally fitted onto the same reference coordinates that are used to compute the +RMSD value. The fit itself is handled by the atom group object, whose parameters are automatically set +by the rmsd component. For very specific applications, however, it may be useful to control +the fitting process separately from the definition of the reference coordinates, to evaluate +various types of non-minimal RMSD values. This can be achieved by setting the related options +(refPositions, etc.) explicitly in the atom group block. This allows for the following non-standard +cases: +

+

    +
  1. applying the optimal translation, but no rotation (rotateToReference off), to bias or restrain + the shape and orientation, but not the position of the atom group; +
  2. +
  3. applying the optimal rotation, but no translation (centerToReference off), to bias or restrain + the shape and position, but not the orientation of the atom group; +
  4. +
  5. disabling the application of optimal roto-translations, which lets the RMSD component + describe the deviation of atoms from fixed positions in the laboratory frame: this allows for + custom positional restraints within the Colvars module; +
  6. +
  7. fitting the atomic positions to different reference coordinates than those used in the RMSD + calculation itself (by specifying refPositions or refPositionsFile within the atom group as + well as within the rmsd block); +
  8. +
  9. applying the optimal rotation and/or translation from a separate atom group, defined through + fittingGroup: the RMSD then reflects the deviation from reference coordinates in a + separate, moving reference frame (see example in the section on fittingGroup).
+ +

+
4.6.3 eigenvector: projection of the atomic coordinates on a vector.
+

+

The block eigenvector {...} defines the projection of the coordinates of a group of +atoms (or more precisely, their deviations from the reference coordinates) onto a vector in +3n, where +n is the +number of atoms in the group. The computed quantity is the total projection:

+ +p ( {xi (t)}, {xi(ref)}) = +i=1nv +i (U(xi(t)xcog(t))(xi(ref) x +cog(ref))), +(6)
+

where, as in the rmsd component, U +is the optimal rotation matrix, xcog(t) +and xcog(ref) +are the centers of geometry of the current and reference positions respectively, and +vi +are the components of the vector for each atom. Example choices for +(vi) are an +eigenvector of the covariance matrix (essential mode), or a normal mode of the system. It is assumed that + &ApplyFunction;ivi = 0: otherwise, the Colvars +module centers the vi +automatically when reading them from the configuration. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.6.4 gyration: radius of gyration of a group of atoms.
+

+

The block gyration {...} defines the parameters for calculating the radius of gyration of a group of atomic positions +{x1(t),x2(t), &ApplyFunction;xN(t)} with respect to their +center of geometry, xcog(t): +

+ +Rgyr = 1 +Ni=1N |xi(t)xcog(t)|2 +(7)
+

This component must contain one atoms {...} block to define the atom group, and returns a positive +number, expressed in length unit. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.6.5 inertia: total moment of inertia of a group of atoms.
+

+

The block inertia {...} defines the parameters for calculating the total moment of inertia of a group of atomic positions +{x1(t),x2(t), &ApplyFunction;xN(t)} with respect to their +center of geometry, xcog(t): +

+ +I = i=1N |x +i(t)xcog(t)|2 +(8)
+

Note that all atomic masses are set to 1 for simplicity. This component must contain one +atoms {...} block to define the atom group, and returns a positive number, expressed in length +unit2. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.6.6 dipoleMagnitude: dipole magnitude of a group of atoms.
+

The dipoleMagnitude {...} block defines the dipole magnitude of a group of atoms (norm of the dipole moment's +vector), being atoms the group where dipole magnitude is calculated. It returns the magnitude in elementary +charge e +times length unit. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.6.7 inertiaZ: total moment of inertia of a group of atoms around a chosen axis.
+

+

The block inertiaZ {...} defines the parameters for calculating the component along the axis +e of the moment of inertia of a group +of atomic positions {x1(t),x2(t), &ApplyFunction;xN(t)} with respect +to their center of geometry, xcog(t): +

+ +Ie = i=1N ( (x +i(t)xcog(t))e)2 +(9)
+

Note that all atomic masses are set to 1 for simplicity. This component must contain one +atoms {...} block to define the atom group, and returns a positive number, expressed in length +unit2. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+

4.7 Rotations

+

+

The variables discussed in this section quantify the rotations of macromolecules (or other quasi-rigid +objects) from a given set of reference coordinates to the current coordinates. Such rotations are +computed following the same method used for best-fit RMSDs (see rmsd and fittingGroup). The +underlying mathematical formalism is described in reference [4], and the implementation in +reference [1]. +

The first of the functions described is the orientation, which describes the full rotation as a unit +quaternion q = (q0,q1,q2,q3), +i.e. 4 numbers with one constraint (3 degrees of freedom). The quaternion +q +is one of only two representations that are both complete and accurate, the other being a + + +3×3 unit matrix with 3 independent +parameters. Although q +is used internally in the Colvars module for features such as the rmsd function and the fittingGroup +option, its direct use as a collective variable is more difficult, and mostly limited to fixed or moving +restraints. +

The two functions orientationAngle and orientationProj, with the latter being +the cosine of the former, represent the amplitude of the full rotation described by +q, +regardless of the direction of its axis. As one-dimensional scalar variables, both orientationAngle and +orientationProj are a much reduced simplification of the full rotation. However, they can be used in a +variety of methods including both restraints and PMF computations. +

A slightly more complete parametrization is achieved by decomposing the full rotation into the two parameters, +tilt and spinAngle. These quantify the amplitudes of two independent sub-rotations away from a certain axis +e, and around the same +axis e, respectively. +The axis e is chosen +by the user, and is by default the Z axis: under that choice, tilt is equivalent to the sine of the Euler “pitch" angle +𝜃, and spinAngle to the sum +of the other two angles, (ϕ +ψ). +This parameterization is mathematically well defined for almost all full rotations, including small ones when +the current coordinates are almost completely aligned with the reference ones. However, a mathematical +singularity prevents using the spinAngle function near configurations where the value of tilt tilt is -1 (i.e. a +-180 rotation around +an axis orthogonal to e). +For these reasons, tilt and spinAngle are useful when the allowed rotations are known to have +approximately the same axis, and differ only in the magnitude of the corresponding angle. In +this use case, spinAngle measures the angle of the sub-rotation around the chosen axis +e, whereas tilt measures +the dot product between e +and the actual axis of the full rotation. +

Lastly, the traditional Euler angles are also available as the functions eulerPhi, eulerTheta and +eulerPsi. Altogether, these are sufficient to represent all three degrees of freedom of a full rotation. +However, they also suffer from the potential “gimbal lock" problem, which emerges whenever +𝜃 ±90, which +includes also the case where the full rotation is small. Under such conditions, the angles +ϕ and +ψ +are both ill-defined and cannot be used as collective variables. For these reasons, +it is highly recommended that Euler angles are used only in simulations where their +range of applicability is known ahead of time, and excludes configurations where +𝜃 ±90 +altogether. +

+ +

+
4.7.1 orientation: orientation from reference coordinates.
+

+

The block orientation {...} returns the same optimal rotation used in the rmsd component to superimpose the coordinates +{xi(t)} onto a set of reference +coordinates {xi(ref)}. Such component +returns a four dimensional vector q = (q0,q1,q2,q3), +with &ApplyFunction;iqi2 = 1; this quaternion +expresses the optimal rotation {xi(t)}{xi(ref)} +according to the formalism in reference [4]. The quaternion +(q0,q1,q2,q3) can also be +written as (cos &ApplyFunction; (𝜃2),sin &ApplyFunction; (𝜃2)u), where +𝜃 is the angle and +u the normalized axis of rotation; +for example, a rotation of 90 +around the z axis is +expressed as “(0.707, 0.0, 0.0, 0.707)". The script quaternion2rmatrix.tcl provides Tcl functions for converting +to and from a 4×4 +rotation matrix in a format suitable for usage in VMD. +

As for the component rmsd, the available options are atoms, refPositionsFile and refPositions. +

Note: refPositions and refPositionsFile define the set of positions from which the optimal rotation +is calculated, but this rotation is not applied to the coordinates of the atoms involved: it is used instead to +define the variable itself. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

Tip: stopping the rotation of a protein. To stop the rotation of an elongated macromolecule in +solution (and use an anisotropic box to save water molecules), it is possible to define a colvar with an +orientation component, and restrain it through the harmonic bias around the identity rotation, (1.0, +0.0, 0.0, 0.0). Only the overall orientation of the macromolecule is affected, and not its internal +degrees of freedom. The user should also take care that the macromolecule is composed by a single +chain, or disable wrapAll otherwise. +

+ +

+
4.7.2 orientationAngle: angle of rotation from reference coordinates.
+

+

The block orientationAngle {...} accepts the same base options as the component +orientation: atoms, refPositions, refPositionsFile. The returned value is the angle of rotation +𝜃 +between the current and the reference positions. This angle is expressed in degrees within the range +[0:180]. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.7.3 orientationProj: cosine of the angle of rotation from reference coordinates.
+

+

The block orientationProj {...} accepts the same base options as the component orientation: +atoms, refPositions, refPositionsFile. The returned value is the cosine of the angle of rotation +𝜃 +between the current and the reference positions. The range of values is [-1:1]. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.7.4 spinAngle: angle of rotation around a given axis.
+

+

The complete rotation described by orientation can optionally be decomposed into two +sub-rotations: one is a “spin" rotation around e, and the other a “tilt" rotation around an axis +orthogonal to e. The component spinAngle measures the angle of the “spin" sub-rotation around +e. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

The component spinAngle returns an angle (in degrees) within the periodic interval +[180 : 180]. +

Note: the value of spinAngle is a continuous function almost everywhere, +with the exception of configurations with the corresponding “tilt" angle equal to +180 (i.e. the tilt +component is equal to 1): +in those cases, spinAngle is undefined. If such configurations are expected, consider +defining a tilt colvar using the same axis e, and restraining it with a lower wall away from +1. +

+ +

+
4.7.5 tilt: cosine of the rotation orthogonal to a given axis.
+

+

The component tilt measures the cosine of the angle of the “tilt" sub-rotation, which +combined with the “spin" sub-rotation provides the complete rotation of a group of atoms. +The cosine of the tilt angle rather than the tilt angle itself is implemented, because the latter +is unevenly distributed even for an isotropic system: consider as an analogy the angle +𝜃 in the +spherical coordinate system. The component tilt relies on the same options as spinAngle, +including the definition of the axis e. The values of tilt are real numbers in the interval +[1 : 1]: the value +1 represents an orientation fully +parallel to e (tilt angle = 0), +and the value 1 +represents an anti-parallel orientation. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.7.6 eulerPhi: Roll angle from references coordinates.
+

+

Assuming the axes of the original frame are denoted as x, y, z and the axes of the rotated frame as X, +Y, Z, the line of nodes, N, can be defined as the intersection of the plane xy and XY. The axis +perpendicular to N and z is defined as P. In this case, as illustrated in the figure below, the complete +rotation described by orientation can optionally be decomposed into three Euler angles: +

+ +
+

+

PIC

+

Although Euler angles are more straightforward to use than quaternions, they are also potentially +subject to the “gimbal lock" problem:
https://en.wikipedia.org/wiki/Gimbal_lock
which arises whenever 𝜃 ±90, +including the common case when the simulated coordinates are near the reference coordinates. +Therefore, a safe use of Euler angles as collective variables requires the use of restraints to avoid +such singularities, such as done in reference [6] and in the protein-ligand binding NAMD +tutorial. +

The eulerPhi component accepts exactly the same options as orientation, and measures the +rotation angle from the x axis to the N axis. This angle is expressed in degrees within the periodic range +[180 : 180]. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.7.7 eulerTheta: Pitch angle from references coordinates.
+

+

This component accepts exactly the same options as orientation, and measures the +rotation angle from the P axis to the Z axis. This angle is expressed in degrees within the range +[90 : 90]. +

Warning: When this angle reaches 90 +or 90, the +definition of orientation by euler angles suffers from the gimbal lock issue. You may need to apply a +restraint to keep eulerTheta away from the singularities. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.7.8 eulerPsi: Yaw angle from references coordinates.
+

+

This component accepts exactly the same options as orientation, and measures the rotation angle +from the N axis to the X axis. This angle is expressed in degrees within the periodic range +[180 : 180]. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+

4.8 Raw data: building blocks for custom functions

+

+ +

+
4.8.1 cartesian: vector of atomic Cartesian coordinates.
+

+

The cartesian {...} block defines a component returning a flat vector +containing the Cartesian coordinates of all participating atoms, in the order +(x1,y1,z1,,xn,yn,zn). +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.8.2 distancePairs: set of pairwise distances between two groups.
+

+

The distancePairs {...} block defines a +N1 ×N2-dimensional +variable that includes all mutual distances between the atoms of two groups. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

This component returns a N1 ×N2-dimensional +vector of numbers, each ranging from 0 +to the largest possible distance within the chosen boundary conditions. +

+ +

+

4.9 Geometric path collective variables

+

+

The geometric path collective variables define the progress along a path, +s, and the distance +from the path, z. +These CVs are proposed by Leines and Ensing[7] , which differ from that[8] proposed +by Branduardi et al., and utilize a set of geometric algorithms. The path is defined +as a series of frames in the atomic Cartesian coordinate space or the CV space. +s and +z are +computed as +

+
+ +s = m +M ± 1 +2M ((v 1 v 3 )2 |v 3 |2 (|v 1 |2 |v 2 |2 )(v1 v3) +|v3|2 1) +(10)
+
+ +z = (v 1 + 1 +2 ((v 1 v 3 )2 |v 3 |2 (|v 1 |2 |v 2 |2 )(v1 v3) +|v3|2 1)v4)2 +(11)
+

where v1 = smz +is the vector connecting the current position to the closest frame, +v2 = z sm1 +is the vector connecting the second closest frame to the current position, +v3 = sm+1 sm +is the vector connecting the closest frame to the third closest frame, and +v4 = smsm1 +is the vector connecting the second closest frame to the closest frame. +m and +M +are the current index of the closest frame and the total number of frames, +respectively. If the current position is on the left of the closest reference frame, the +± in +s turns to +the positive sign. Otherwise it turns to the negative sign. +

The equations above assume: (i) the frames are equidistant and (ii) the second and the third closest +frames are neighbouring to the closest frame. When these assumptions are not satisfied, this set of path +CV should be used carefully. +

+ +

+
4.9.1 gspath: progress along a path defined in atomic Cartesian coordinate space.
+

+

In the gspath {...} and the gzpath {...} block all vectors, namely +z and +sk +are defined in atomic Cartesian coordinate space. More specifically, +z = [r1,,rn], where +ri is the +i-th atom specified +in the atoms block. sk = [rk,1,,rk,n], + + +where rk,i means +the i-th atom +of the k-th +reference frame. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.9.2 gzpath: distance from a path defined in atomic Cartesian coordinate space.
+

+

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

The usage of gzpath and gspath is illustrated below:

+
+

colvar {
  # Progress along the path
  name gs
  # The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)
  # Use atomic coordinate from atoms 1, 2 and 3 to compute the path
  gspath {
    atoms {atomnumbers { 1 2 3 }}
    refPositionsFile1 string-00.pdb
    refPositionsFile2 string-01.pdb
    refPositionsFile3 string-02.pdb
    refPositionsFile4 string-03.pdb
    refPositionsFile5 string-04.pdb
  }
}
colvar {
  # Distance from the path
  name gz
  # The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)
  # Use atomic coordinate from atoms 1, 2 and 3 to compute the path
  gzpath {
    atoms {atomnumbers { 1 2 3 }}
    refPositionsFile1 string-00.pdb
    refPositionsFile2 string-01.pdb
    refPositionsFile3 string-02.pdb
    refPositionsFile4 string-03.pdb
    refPositionsFile5 string-04.pdb
  }
}

+
+ +

+
4.9.3 linearCombination: Helper CV to define a linear combination of other CVs
+

+

This is a helper CV which can be defined as a linear combination of other CVs. It maybe useful when +you want to define the gspathCV {...} and the gzpathCV {...} as combinations of other CVs. Total +forces (required by ABF) of this CV are not available. + + +

+ +

+
4.9.4 customColvar: Helper CV to define a mathematical expression as CV from other +CVs
+

+

This is a helper CV which can be defined as a mathematical expression (see 4.16) of other CVs by +using customFunction. Currently only the scalar type of customFunction is supported. If customFunction +is not provided, this component falls back to linearCombination. It maybe useful when you want to define +the gspathCV {...}, the gzpathCV {...} and NeuralNetwork {...} as combinations of other CVs. Total +forces (required by ABF) of this CV are not available. +

+ +

+
4.9.5 gspathCV: progress along a path defined in CV space.
+

+

In the gspathCV {...} and the gzpathCV {...} block all vectors, namely +z and +sk are defined in CV space. +More specifically, z = [ξ1,,ξn], +where ξi is +the i-th CV. +sk = [ξk,1,,ξk,n], where +ξk,i means the +i-th CV of +the k-th +reference frame. It should be note that these two CVs requires the pathFile option, which specifies a +path file. Each line in the path file contains a set of space-seperated CV value of the reference frame. The +sequence of reference frames matches the sequence of the lines. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.9.6 gzpathCV: distance from a path defined in CV space.
+

+

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

The usage of gzpathCV and gspathCV is illustrated below:

+
+

colvar {
  # Progress along the path
  name gs
  # Path defined by the CV space of two dihedral angles
  gspathCV {
    pathFile ./path.txt
    dihedral {
      name 001
      group1 {atomNumbers {5}}
      group2 {atomNumbers {7}}
      group3 {atomNumbers {9}}
      group4 {atomNumbers {15}}
    }
    dihedral {
      name 002
      group1 {atomNumbers {7}}
      group2 {atomNumbers {9}}
      group3 {atomNumbers {15}}
      group4 {atomNumbers {17}}
    }
  }
}

colvar {
  # Distance from the path
  name gz
  gzpathCV {
    pathFile ./path.txt
    dihedral {
      name 001
      group1 {atomNumbers {5}}
      group2 {atomNumbers {7}}
      group3 {atomNumbers {9}}
      group4 {atomNumbers {15}}
    }
    dihedral {
      name 002
      group1 {atomNumbers {7}}
      group2 {atomNumbers {9}}
      group3 {atomNumbers {15}}
      group4 {atomNumbers {17}}
    }
  }
}

+
+ +

+

4.10 Arithmetic path collective variables

+

+

The arithmetic path collective variable in CV space uses a similar formula as the one proposed by Branduardi[8] et al., +except that it computes s +and z in +CV space instead of RMSDs in Cartesian space. Moreover, this implementation allows different +coefficients for each CV components as described in [9]. Assuming a path is composed of +N reference frames and +defined in an M-dimensional CV +space, then the equations of s +and z of +the path are +

+
+ +s = 1 +N 1 i=0N1iexp &ApplyFunction; (λj=1Mcj2 (xjxi,j)2) +i=0N1exp &ApplyFunction; (λj=1Mcj2 (xjxi,j)2) +(12)
+
+ +z = 1 +λln &ApplyFunction; (i=0N1exp &ApplyFunction; (λ +j=1Mc +j2 (x +jxi,j)2)) +(13)
+

where cj is the +coefficient(weight) of the j-th +CV, xi,j is the value +of j-th CV of +i-th reference frame +and xj is the value of +j-th CV of current frame. +λ is a parameter to +smooth the variation of s +and z. It should be +noted that the index i +ranges from 0 to +N 1, and the definition +of s is normalized +by 1(N 1). Consequently, +the scope of s +is [0 : 1]. +

+ +

+
4.10.1 aspathCV: progress along a path defined in CV space.
+

+

This colvar component computes the s +variable. +

+

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.10.2 azpathCV: distance from a path defined in CV space.
+

+

This colvar component computes the z +variable. Options are the same as in 4.10.1. +

The usage of azpathCV and aspathCV is illustrated below: + + +

+
+

colvar {
  # Progress along the path
  name as
  # Path defined by the CV space of two dihedral angles
  aspathCV {
    pathFile ./path.txt
    weights {1.0 1.0}
    lambda 0.005
    dihedral {
      name 001
      group1 {atomNumbers {5}}
      group2 {atomNumbers {7}}
      group3 {atomNumbers {9}}
      group4 {atomNumbers {15}}
    }
    dihedral {
      name 002
      group1 {atomNumbers {7}}
      group2 {atomNumbers {9}}
      group3 {atomNumbers {15}}
      group4 {atomNumbers {17}}
    }
  }
}

colvar {
  # Distance from the path
  name az
  azpathCV {
    pathFile ./path.txt
    weights {1.0 1.0}
    lambda 0.005
    dihedral {
      name 001
      group1 {atomNumbers {5}}
      group2 {atomNumbers {7}}
      group3 {atomNumbers {9}}
      group4 {atomNumbers {15}}
    }
    dihedral {
      name 002
      group1 {atomNumbers {7}}
      group2 {atomNumbers {9}}
      group3 {atomNumbers {15}}
      group4 {atomNumbers {17}}
    }
  }
}

+
+ +

+
4.10.3 aspath: progress along a path defined in atomic Cartesian coordinate space.
+

+

This CV computes a special case of Eq. 12, where +xj is the +j-th atomic +position, xi,j is the +j-th atomic position of +the i-th reference frame. +The subtraction xjxi,j is +actually calculated as xjRixi,j, +where Ri is a +3x3 rotation matrix that minimizes the RMSD between the current atomic positions of simulation and the +i-th reference +frame. Bold xj +is used since an atomic position is a vector. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ + +

+
4.10.4 azpath: distance from a path defined in atomic Cartesian coordinate space.
+

+

Similar to aspath, this CV computes a special case of Eq. 13, and shares the same options as +aspath. +

The usage of azpath and aspath is illustrated below:

+
+

colvar {
  # Progress along the path
  name as
  # The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)
  # Use atomic coordinate from atoms 1, 2 and 3 to compute the path
  aspath {
    atoms {atomnumbers { 1 2 3 }}
    refPositionsFile1 string-00.pdb
    refPositionsFile2 string-01.pdb
    refPositionsFile3 string-02.pdb
    refPositionsFile4 string-03.pdb
    refPositionsFile5 string-04.pdb
  }
}

colvar {
  # Distance from the path
  name az
  # The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)
  # Use atomic coordinate from atoms 1, 2 and 3 to compute the path
  azpath {
    atoms {atomnumbers { 1 2 3 }}
    refPositionsFile1 string-00.pdb
    refPositionsFile2 string-01.pdb
    refPositionsFile3 string-02.pdb
    refPositionsFile4 string-03.pdb
    refPositionsFile5 string-04.pdb
  }
}

+
+ +

+

4.11 Dense neural network in CV space (MLCV)

+

+

This colvar component computes a non-linear combination of other scalar colvar components, where +the transformation is defined by a dense neural network.[10] The network can be optimized using any +framework, and its parameters are provided to Colvars in plain text files, as detailed below. +An example Python script to export the parameters of a TensorFlow model is provided in +colvartools/extract_weights_biases.py in the Colvars source tree. +

+
+ +

Dense neural network +

Figure 1: Graphical representation of an example dense neural network with two hidden layers +y1 +and y2. +Both the input layer x +and the output layer z +have two nodes. The input nodes can be any existing scalar CVs.
+

+

The output of the j-th +node of a k-th +layer that has Nk +nodes is computed by +

+
+ +yk,j = fk (i=1Nk1w +(k,j),(k1,i)yk1,i+bk,j), +(14)
+

where fk is the activation +function of the k-th +layer, w(k,j),(k1,i) is the weight of +j-th node with respect +to the i-th output of +previous layer, and bk,j +is the bias of j-th +node of k-th +layer. +

List of keywords (see also 4.2, 4.12, 4.13 and 4.15 for additional options):

+ +

An example of configuration using NeuralNetwork is shown below:

+
+

colvar {
  # Define a neural network with 2 layers
  # The inputs are two torsion angles
  # and the first node at the output layer is used as the final CV
  name nn_output_1
  NeuralNetwork {
    output_component 0
    layer1_WeightsFile      dense_1_weights.txt
    layer1_BiasesFile       dense_1_biases.txt
    layer1_activation       tanh
    layer2_WeightsFile      dense_2_weights.txt
    layer2_BiasesFile       dense_2_biases.txt
    layer2_activation       tanh
    # The component coefficient is used for normalization
    componentCoeff 180.0
    dihedral {
      name 001
      # normalization factor 1.0/180.0
      componentCoeff 0.00555555555555555556
      group1 {atomNumbers {5}}
      group2 {atomNumbers {7}}
      group3 {atomNumbers {9}}
      group4 {atomNumbers {15}}
    }
    dihedral {
      name 002
      # normalization factor 1.0/180.0
      componentCoeff 0.00555555555555555556
      group1 {atomNumbers {7}}
      group2 {atomNumbers {9}}
      group3 {atomNumbers {15}}
      group4 {atomNumbers {17}}
    }
  }
}

+
+ +

+

4.12 Shared keywords for all components

+

+

The following options can be used for any of the above colvar components in order to obtain a +polynomial combination.

+ + +

+

4.13 Periodic components

+

+

Certain components, such as dihedral or dihedral, compute angles that lie in a periodic interval +between 180 +and 180. +When computing pairwise distances between values of those angles (e.g. for the sake of computing +restraint potentials, or sampling PMFs), periodicity is taken into account by following the minimum-image +convention. +

Additionally, several other components, such as distanceZ, support optional periodicity if this is +provided in the configuration. +

The following keywords can be used within periodic components, or within custom variables +(4.16)). + + +

+ +

Note: using linear/polynomial combinations of periodic components (see 4.15), or other custom or +scripted function may invalidate the periodicity. Use such combinations carefully: estimate the range of +possible values of each component in a given simulation, and make use of wrapAround to limit this +problem whenever possible. +

+ +

+

4.14 Non-scalar components

+

+

When one of the following components are used, the defined colvar returns a value that is not a scalar +number:

+ +

The distance between two 3-dimensional unit vectors is computed as the angle +between them. The distance between two quaternions is computed as the angle +between the two 4-dimensional unit vectors: because the orientation represented by +q is the same as the +one represented by q, +distances between two quaternions are computed considering the closest of the two symmetric +images. +

Non-scalar components carry the following restrictions:

+ +

Note: while these restrictions apply to individual colvars based on non-scalar components, no limit is +set to the number of scalar colvars. To compute multi-dimensional histograms and PMFs, use sets of +scalar colvars of arbitrary size. +

+ +

+
4.14.1 Calculating total forces
+

In addition to the restrictions due to the type of value computed (scalar or non-scalar), a final restriction +can arise when calculating total force (outputTotalForce option or application of a abf bias). total forces +are available currently only for the following components: distance, distanceZ, distanceXY, angle, +dihedral, rmsd, eigenvector and gyration. + + +

+

4.15 Linear and polynomial combinations of components

+

+

To extend the set of possible definitions of colvars +ξ(r), multiple +components qi(r) +can be summed with the formula:

+ +ξ (r) =ici[qi(r)]ni + +(15)
+

where each component appears with a unique coefficient +ci (1.0 by default) the +positive integer exponent ni +(1 by default). +

Any set of components can be combined within a colvar, provided that they return the same type of +values (scalar, unit vector, vector, or quaternion). By default, the colvar is the sum of its components. +Linear or polynomial combinations (following equation (15)) can be obtained by setting the following +parameters, which are common to all components:

+ +

Example: To define the average of a colvar across different parts of the system, +simply define within the same colvar block a series of components of the same type +(applied to different atom groups), and assign to each component a componentCoeff of +1N. + + +

+ +

+

4.16 Custom functions

+

+

Collective variables may be defined by specifying a custom function of multiple components, i.e. an +analytical expression that is more general than the linear combinations described in 4.15. Such +expression is parsed and calculated by Lepton, the lightweight expression parser written by +Peter Eastman (https://simtk.org/projects/lepton) that produces efficient evaluation +routines for both the expression and its derivatives. Although Lepton is generally available +in most applications and builds where Colvars is included, it is best to check section 9 to +confirm. +

+ +

The expression may use the collective variable components as variables, referred to by their +user-defined name. Scalar elements of vector components may be accessed by appending a 1-based +index to their name, as in the example below. When implementing generic functions of Cartesian +coordinates rather than functions of existing components, the cartesian component may be particularly +useful. A scalar-valued custom variable may be manually defined as periodic by providing the keyword +period, and the optional keyword wrapAround, with the same meaning as in periodic components (see +4.13 for details). A vector variable may be defined by specifying the customFunction parameter +several times: each expression defines one scalar element of the vector colvar, as in this +example: + + +

+
+

colvar {
  name custom

  # A 2-dimensional vector function of a scalar x and a 3-vector r
  customFunction cos(x) * (r1 + r2 + r3)
  customFunction sqrt(r1 * r2)

  distance {
    name x
    group1 { atomNumbers 1 }
    group2 { atomNumbers 50 }
  }
  distanceVec {
    name r
    group1 { atomNumbers 10 11 12 }
    group2 { atomNumbers  20 21 22 }
  }
}

+
+

Numeric constants may be given in either decimal or exponential form (e.g. 3.12e-2). An expression +may be followed by definitions for intermediate values that appear in the expression, separated by +semicolons. For example, the expression:
a^2 + a*b + b^2; a = a1 + a2; b = b1 + b2
is exactly equivalent to:
(a1 + a2)^2 + (a1 + a2) * (b1 + b2) + (b1 + b2)^2.
The definition of an intermediate value may itself involve other intermediate values. All uses of a value +must appear before that value's definition. +

Lepton supports the usual arithmetic operators +, -, *, /, and ^ (power), as well as the following +functions: +

+
+

+

+
+ + + + + + + + + + + + + + + + + + + + + + + + +


sqrt Square root
exp Exponential
log Natural logarithm
erf Error function
erfc Complementary error function


sin Sine (angle in radians)
cos Cosine (angle in radians)
sec Secant (angle in radians)
csc Cosecant (angle in radians)
tan Tangent (angle in radians)
cot Cotangent (angle in radians)
asin Inverse sine (in radians)
acos Inverse cosine (in radians)
atan Inverse tangent (in radians)
atan2 Two-argument inverse tangent (in radians)


sinh Hyperbolic sine
cosh Hyperbolic cosine
tanh Hyperbolic tangent


abs Absolute value
floor Floor
ceil Ceiling
min Minimum of two values
max Maximum of two values
delta delta(x) = 1 if x = 0, 0 otherwise
step step(x) = 0 if x < 0, 1 if x >= 0
select select(x,y,z) = z if x = 0, y otherwise


+
+ +

+

4.17 Defining grid parameters for a colvar

+

+

Many algorithms require the definition of two boundaries and a bin width for each colvar, which are +necessary to compute discrete “states" for a collective variable's otherwise continuous values. The +following keywords define these parameters for a specific variable, and will be used by all bias that refer to +that variable unless otherwise specified. +

+ + +

+

4.18 Trajectory output

+

+ + +

+

4.19 Extended Lagrangian

+

+

The following options enable extended-system dynamics, where a colvar is coupled to an +additional degree of freedom (fictitious particle) by a harmonic spring. This extended coordinate +masks the colvar and replaces it transparently from the perspective of biasing and analysis +methods. Biasing forces are then applied to the extended degree of freedom, and the actual +geometric colvar (function of Cartesian coordinates) only feels the force from the harmonic +spring. This is particularly useful when combined with an abf bias to perform eABF simulations +(6.3). + + +

Note that for some biases (harmonicWalls, histogram), this masking behavior is controlled by the +keyword bypassExtendedLagrangian. Specifically for harmonicWalls, the default behavior is to bypass +extended Lagrangian coordinates and act directly on the actual colvars. +

+ + +

+

4.20 Multiple time-step variables

+

+ + +

+

4.21 Backward-compatibility

+

+ + +

+

4.22 Statistical analysis

+

+

Run-time calculations of statistical properties that depend explicitly on time can be performed for +individual collective variables. Currently, several types of time correlation functions, running averages and +running standard deviations are implemented. For run-time computation of histograms, please see the +histogram bias (6.11). + + +

+ +

+

+ +

+

5 Selecting atoms

+

+

To define collective variables, atoms are usually selected as groups. Each group is defined using an +identifying keyword that is unique in the context of the specific colvar component (e.g. for a distance +component, the two groups are identified by the group1 and group2 keywords). +

The group's identifying keyword is followed by a brace-delimited block containing selection keywords +and other parameters, one of which is name:

+ +

Other keywords are documented in the following sections. +

In the example below, the gyration component uses the identifying keyword atoms to define its +associated group, which is defined based on the index group named “Protein-H". Optionally, the group is +also given the unique name “my_protein", so that atom groups defined later in the Colvars configuration +may refer to it.

+
+

colvar {
  name rgyr
  gyration {
    atoms {
      name my_protein
      indexGroup Protein-H
    }
  }
}

+
+ +

+

5.1 Atom selection keywords

+

+

Selection keywords may be used individually or in combination with each other, and each can be +repeated any number of times. Selection is incremental: each keyword adds the corresponding +atoms to the selection, so that different sets of atoms can be combined. However, atoms +included by multiple keywords are only counted once. Below is an example configuration +for an atom group called “atoms". Note: this is an unusually varied combination of selection +keywords, demonstrating how they can be combined together: most simulations only use one of +them.

+
+

atoms {

  # add atoms 1 and 3 to this group (note: first atom in the system is 1)
  atomNumbers { 
    1 3
  }

  # add atoms starting from 20 up to and including 50
  atomNumbersRange  20-50
  # add index group (requires a .ndx file to be provided globally)
  indexGroup Water
}

+
+

The resulting selection includes atoms 1 and 3, those between 20 and 50, and those in the index +group called “Water". The indices of this group are read from the file provided by the global keyword +indexFile. +

The complete list of selection keywords available in LAMMPS is: +

+ + +

+

5.2 Moving frame of reference.

+

+

The following options define an automatic calculation of an optimal translation (centerToReference) or +optimal rotation (rotateToReference), that superimposes the positions of this group to a provided set of +reference coordinates. Alternately, centerToOrigin applies a translation to place the geometric +center of the group at (0, 0, 0). This can allow, for example, to effectively remove from certain +colvars the effects of molecular tumbling and of diffusion. Given the set of atomic positions +xi, the colvar +ξ can be defined on a set of +roto-translated positions xi = R(xixC)+xref. + + +xC is the geometric +center of the xi, +R is the optimal rotation matrix +to the reference positions and xref +is the geometric center of the reference positions. +

Components that are defined based on pairwise distances are naturally invariant under global +roto-translations. Other components are instead affected by global rotations or translations: however, they +can be made invariant if they are expressed in the frame of reference of a chosen group of atoms, using +the centerToReference and rotateToReference options. Finally, a few components are defined by +convention using a roto-translated frame (e.g. the minimal RMSD): for these components, +centerToReference and rotateToReference are enabled by default. In typical applications, the default +settings result in the expected behavior. +

+

Warning on rotating frames of reference and periodic boundary conditions. +rotateToReference affects coordinates that depend on minimum-image distances in periodic +boundary conditions (PBC). After rotation of the coordinates, the periodic cell vectors become irrelevant: +the rotated system is effectively non-periodic. A safe way to handle this is to ensure that the relevant +inter-group distance vectors remain smaller than the half-size of the periodic cell. If this is not desirable, +one should avoid the rotating frame of reference, and apply orientational restraints to the reference group +instead, in order to keep the orientation of the reference group consistent with the orientation of the +periodic cell. +

+

Warning on rotating frames of reference and ABF. + Note that centerToReference and rotateToReference may affect the Jacobian derivative of colvar +components in a way that is not taken into account by default. Be careful when using these options in ABF +simulations or when using total force values. +

+ +

The following options have default values appropriate for the vast majority of applications, and are only +provided to support rare, special cases.

+ + +

+

5.3 Treatment of periodic boundary conditions.

+

+

In simulations with periodic boundary conditions (PBCs), Colvars computes all distances between two +points following the nearest-image convention, using PBC parameters provided by LAMMPS. However, +many common variables rely on a consistent definition of the center of mass or geometry of a group of +atoms. This requires the use of unwrapped coordinates, which are not subject to “jumps" when they +diffuse across periodic boundaries. +

LAMMPS controls the internal availability of unwrapped coordinates using the unwrap keyword in 3.2, +which defaults to yes. The user should determine whether it is appropriate to maintain the default value of +unwrap, depending on the specifics of each system. +

In general, internal coordinate wrapping by LAMMPS does not affect the calculation of colvars if each +atom group satisfies one or more of the following: +

    +
  1. it is composed by only one atom; +
  2. +
  3. it is used by a colvar component which does not make use of its center of geometry, but only + of pairwise distances (distanceInv, coordNum, hBond, alpha, dihedralPC); + + +
  4. +
  5. it is used by a colvar component that ignores the ill-defined Cartesian components of its + center of mass (such as the x + and y + components of a membrane's center of mass modeled with distanceZ).
+ +

+

5.4 Performance of a Colvars calculation based on group size.

+

+

In simulations performed with MD simulation engines such as GROMACS, LAMMPS or NAMD, the +computation of energy and forces is distributed (i.e., parallelized) over multiple nodes, as well as over the +CPU/GPU cores of each node. When Colvars is enabled, atomic coordinates are collected on a single +CPU core, where collective variables and their biases are computed. This means that in the +case of simulations that are already being run over large numbers of nodes, or inside a GPU, +a Colvars calculation may produce a significant overhead. This overhead comes from the +combined cost of two operation: transmitting atomic coordinates, and computing functions of the +same. +

Performance can be improved in multiple ways: +

+ +

+

+ +

+

6 Biasing and analysis methods

+

+

A biasing or analysis method can be applied to existing collective variables by using the following +configuration:

+
+

 <biastype > {
  name  <name > +
  colvars  <xi1 >  <xi2 > ...
   <parameters >
}

+
+

The keyword <biastype > +indicates the method of choice. There can be multiple instances of the same method, e.g. using multiple +harmonic blocks allows defining multiple restraints. +

All biasing and analysis methods implemented recognize the following options:

+ + +

+

6.1 Thermodynamic integration

+

+

The methods implemented here provide a variety of estimators of conformational free-energies. These +are carried out at run-time, or with the use of post-processing tools over the generated output files. The +specifics of each estimator are discussed in the documentation of each biasing or analysis +method. +

A special case is the traditional thermodynamic integration (TI) method, used for example to compute +potentials of mean force (PMFs). Most types of restraints (6.6, 6.8, 6.9, ...) as well as metadynamics (6.5) +can optionally use TI alongside their own estimator, based on the keywords documented +below. +

+ +

In adaptive biasing force (ABF) (6.2) the above keywords are not recognized, because their +functionality is either included already (conventional ABF) or not available (extended-system +ABF). +

+ +

+

6.2 Adaptive Biasing Force

+

+

For a full description of the Adaptive Biasing Force method, see reference [12]. For details about this +implementation, see references [13] and [14]. When publishing research that makes use of this +functionality, please cite references [12] and [14]. +

An alternate usage of this feature is the application of custom tabulated biasing potentials to one or +more colvars. See inputPrefix and updateBias below. +

Combining ABF with the extended Lagrangian feature (4.19) of the variables produces the +extended-system ABF variant of the method (6.3). +

ABF is based on the thermodynamic integration (TI) scheme for computing +free energy profiles. The free energy as a function of a set of collective variables +ξ = (ξi)i[1,n] is defined from the +canonical distribution of ξ, +𝒫(ξ): +

+
+ +A (ξ) = 1 +βln &ApplyFunction; 𝒫(ξ)+A0 +(16)
+

In the TI formalism, the free energy is obtained from its gradient, which is generally calculated in the form of the +average of a force Fξ +exerted on ξ, taken +over an iso-ξ +surface: +

+
+ + &ApplyFunction;ξA (ξ) = Fξξ +(17)
+

Several formulae that take the form of (17) have been proposed. This implementation +relies partly on the classic formulation [15], and partly on a more versatile scheme originating +in a work by Ruiz-Montero et al. [16], generalized by den Otter [17] and extended to +multiple variables by Ciccotti et al. [18]. Consider a system subject to constraints of the form +σk(x) = 0. Let +(vi)i[1,n] be arbitrarily chosen +vector fields (3N 3N) +verifying, for all i, +j, and +k: +

+ + + vi &ApplyFunction;xξj = δij (18) + vi &ApplyFunction;xσk = 0 (19) + +

+

+

then the following holds [18]: +

+
+ +A +ξi = vi &ApplyFunction;xV kBT &ApplyFunction;xviξ +(20)
+

where V is the potential +energy function. vi +can be interpreted as the direction along which the force acting on variable +ξi is measured, +whereas the second term in the average corresponds to the geometric entropy contribution that appears as a Jacobian +correction in the classic formalism [15]. Condition (18) states that the direction along which the total force on +ξi is measured is orthogonal to +the gradient of ξj, which means +that the force measured on ξi +does not act on ξj. +

Equation (19) implies that constraint forces are orthogonal to the directions along which the free +energy gradient is measured, so that the measurement is effectively performed on unconstrained degrees +of freedom. +

In the framework of ABF, Fξ is +accumulated in bins of finite size δξ, +thereby providing an estimate of the free energy gradient according to equation (17). The biasing +force applied along the collective variables to overcome free energy barriers is calculated +as: +

+
+ +FABF = α(N +ξ)× &ApplyFunction;xA~(ξ) +(21)
+

where &ApplyFunction;xA~ +denotes the current estimate of the free energy gradient at the current point +ξ in the collective +variable subspace, and α(Nξ) +is a scaling factor that is ramped from 0 to 1 as the local number of samples +Nξ +increases to prevent non-equilibrium effects in the early phase of the simulation, when the gradient +estimate has a large variance. See the fullSamples parameter below for details. +

As sampling of the phase space proceeds, the estimate + &ApplyFunction;xA~ is +progressively refined. The biasing force introduced in the equations of motion guarantees that in the bin centered +around ξ, +the forces acting along the selected collective variables average to zero over time. Eventually, as the +underlying free energy surface is canceled by the adaptive bias, evolution of the system along +ξ is +governed mainly by diffusion. Although this implementation of ABF can in principle be used in +arbitrary dimension, a higher-dimension collective variable space is likely to be difficult to +sample and visualize. Most commonly, the number of variables is one or two, sometimes +three. +

+ +

+
6.2.1 ABF requirements on collective variables
+

+

The following conditions must be met for an ABF simulation to be possible and to produce an accurate +estimate of the free energy profile. Note that these requirements do not apply when using the +extended-system ABF method (6.3). +

+

    +
  1. Only linear combinations of colvar components can be used in ABF calculations. +
  2. +
  3. Availability of total forces is necessary. The following colvar components can be used in ABF + calculations: distance, distance_xy, distance_z, angle, dihedral, gyration, rmsd and + eigenvector. Atom groups may not be replaced by dummy atoms, unless they are excluded + from the force measurement by specifying oneSiteTotalForce, if available. +
  4. +
  5. Mutual orthogonality of colvars. In a multidimensional ABF calculation, equation (18) must be satisfied for any + two colvars ξi + and ξj. + Various cases fulfill this orthogonality condition: +
      +
    • ξi + and ξj + are based on non-overlapping sets of atoms. +
    • +
    • atoms involved in the force measurement on ξi + do not participate in the definition of ξj. + This can be obtained using the option oneSiteTotalForce of the distance, angle, and + dihedral components (example: Ramachandran angles ϕ, + ψ). +
    • +
    • ξi + and ξj + are orthogonal by construction. Useful cases are the sum and difference of two components, + or distance_z and distance_xy using the same axis.
    +
  6. +
  7. Mutual orthogonality of components: when several components are combined into a colvar, it is assumed that + their vectors vi + (equation (20)) are mutually orthogonal. The cases described for colvars in the previous paragraph + apply. +
  8. +
  9. Orthogonality of colvars and constraints: equation 19 can be satisfied in two simple ways, if either + no constrained atoms are involved in the force measurement (see point 3 above) or pairs of atoms + joined by a constrained bond are part of an atom group which only intervenes through its center + (center of mass or geometric center) in the force measurement. In the latter case, the contributions + of the two atoms to the left-hand side of equation 19 cancel out. For example, all atoms of a rigid + TIP3P water molecule can safely be included in an atom group used in a distance + component.
+ +

+
6.2.2 Parameters for ABF
+

+

ABF depends on parameters from each collective variable to define the grid on which free energy +gradients are computed: see 4.17 for detauls. Other parameters to control the ABF runtime can be set in +the ABF configuration block: +

+ + +

+
6.2.3 Output files
+

+

The ABF bias produces the following files, all in multicolumn text format (3.8.4):

+ +

Also in the case of one-dimensional calculations, the ABF bias can report its current energy via +outputEnergy; in higher dimensions, such computation is not implemented and the energy reported is +zero. + + +

If several ABF biases are defined concurrently, their name is inserted to produce unique filenames for +output, as in output.abf1.grad. This should not be done routinely and could lead to meaningless results: +only do it if you know what you are doing! +

If the colvar space has been partitioned into sections (windows) in which independent ABF +simulations have been run, the resulting data can be merged using the inputPrefix option described +above (a run of 0 steps is enough). +

+ +

+
6.2.4 Multidimensional free energy surfaces
+

+

The ABF method only produces an estimate of the free energy gradient. The free energy surface itself +can be computed depending on the value of integrate and related options. +

+ +

In dimension 4 or greater, integrating the discretized gradient becomes non-trivial. The +standalone utility abf_integrate is provided to perform that task. Because 4D ABF calculations +are uncommon, this tool is practically deprecated by the Poisson integration described +above. +

abf_integrate reads the gradient data and uses it to perform a Monte-Carlo (M-C) simulation in +discretized collective variable space (specifically, on the same grid used by ABF to discretize the free +energy gradient). By default, a history-dependent bias (similar in spirit to metadynamics) is used: at each +M-C step, the bias at the current position is incremented by a preset amount (the hill height). Upon +convergence, this bias counteracts optimally the underlying gradient; it is negated to obtain the estimate +of the free energy surface. +

abf_integrate is invoked using the command-line:
abf_integrate <gradient_file> [-n <nsteps>] [-t <temp>] [-m (0|1)] [-h <hill_height>] [-f +<factor>] +

The gradient file name is provided first, followed by other parameters in any order. They are described +below, with their default value in square brackets:

+ +

Using the default values of all parameters should give reasonable results in most cases. +

abf_integrate produces the following output files:

+ +

Note: Typically, the “deviation" vector field does not vanish as the integration converges. This happens +because the numerical estimate of the gradient does not exactly derive from a potential, due to numerical +approximations used to obtain it (finite sampling and discretization on a grid). See Ref.[19] for +details. +

+ +

+

6.3 Extended-system Adaptive Biasing Force (eABF)

+

+

Extended-system ABF (eABF) is a variant of ABF (6.2) where the bias is not applied +directly to the collective variable, but to an extended coordinate (“fictitious variable") +λ that +evolves dynamically according to Newtonian or Langevin dynamics. Such an extended coordinate is +enabled for a given colvar using the extendedLagrangian and associated keywords (4.19). The theory of +eABF and the present implementation are documented in detail in reference [20]. + + +

Defining an ABF bias on a colvar wherein the extendedLagrangian option is active will perform eABF +automatically; there is no dedicated option. +

The extended variable λ is +coupled to the colvar z = ξ(q) by the +harmonic potential (k2)(zλ)2. Under eABF +dynamics, the adaptive bias on λ +is the running estimate of the average spring force:

+ +Fbias(λ) = k(λ z) +λ +(23)
+

where the angle brackets indicate a canonical average conditioned by +λ = λ. +At long simulation times, eABF produces a flat histogram of the extended variable +λ, and a flattened +histogram of ξ, +whose exact shape depends on the strength of the coupling as defined by extendedFluctuation +in the colvar. Coupling should be somewhat loose for faster exploration and convergence, +but strong enough that the bias does help overcome barriers along the colvar +ξ.[20] +Distribution of the colvar may be assessed by plotting its histogram, which is written to +the output.zcount file in every eABF simulation. Note that a histogram bias (6.11) +applied to an extended-Lagrangian colvar will access the extended degree of freedom +λ, not the original +colvar ξ; +however, the joint histogram may be explicitly requested by listing the name of the colvar twice in a row +within the colvars parameter of the histogram block. +

The eABF PMF is that of the coordinate λ, +it is not exactly the free energy profile of ξ. +That quantity can be calculated based on the CZAR estimator. +

+ +

+
6.3.1 CZAR estimator of the free energy
+

+

The corrected z-averaged restraint (CZAR) estimator is described in detail in reference [20]. It is +computed automatically in eABF simulations, regardless of the number of colvars involved. Note that ABF +may also be applied on a combination of extended and non-extended colvars; in that case, CZAR still +provides an unbiased estimate of the free energy gradient. +

CZAR estimates the free energy gradient as:

+ +A(z) = 1 +β dln &ApplyFunction; ρ~(z) +dz +k(λzz). +(24)
+

where z = ξ(q) is the colvar, +λ is the extended variable +harmonically coupled to z +with a force constant k, +and ρ~(z) is the observed +distribution (histogram) of z, +affected by the eABF bias. +

Parameters for the CZAR estimator are:

+ +

Similar to ABF, the CZAR estimator produces two output files in multicolumn text format (3.8.4): +

+ +

The sampling histogram associated with the CZAR estimator is the +z-histogram, +which is written in the file output.zcount. +

+ +

+

6.4 Adiabatic Bias Molecular Dynamics (ABMD)

+

+

This implements the Adiabatic Bias Molecular Dynamics (ABMD) method of Marchi and Ballone [21], +sometimes referred to as ratchet-and-pawl or ratcheted MD. ABMD is a non-equilibrium process that +enhances the motion of a scalar colvar in a given direction. For simplicity, the case of an increasing value +is described below, but enhancing downward motion of the variable is also supported via the decreasing +flag. +

ABMD does not directly push the variable forward, but prevents it from backtracking by applying a time-dependent +half-harmonic potential Vt, +the center of which is the highest value attained by the variable so far (its high-water mark). This design +implies that the bias is conservative at all times and therefore exerts zero net work, hence the “adiabatic" +qualifier: +

+
+ +Vt(ξt) = { 1 +2k (ξtξtref)2 if ξt < ξtref + 0 otherwise +(25)
+

where ξtref is the high-water +mark at time t, bounded by a +user-defined stopping value ξstop: +

+
+ +ξtref = min &ApplyFunction; (max &ApplyFunction; +s=0tξ +s,ξstop). +(26)
+

Note: because the ABMD potential in eq. 25 is never defined for more than one variable, no internal unit conversion +is applied to k: +this behavior is different from other restraints available in Colvars, such as the harmonic wall restraints in +6.8. +

Besides the name of the biased variable specified by the colvars keyword, the tunable parameters of ABMD are the +force constant k and +the stopping value ξstop, +set by the following user keywords: +

+ +

ABMD also supports the following common bias parameters:

+ + +

+

6.5 Metadynamics

+

+

The metadynamics method uses a history-dependent potential [22] that generalizes to +any type of colvars the conformational flooding [23] and local elevation [24] methods, +originally formulated to use as colvars the principal components of a covariance matrix +or a set of dihedral angles, respectively. The metadynamics potential on the colvars +ξ = (ξ1,ξ2, &ApplyFunction;,ξNcv) is +defined as:

+ +Vmeta (ξ (t)) = t=δt,2δt,t<tW +i=1Ncv exp &ApplyFunction; ((ξi(t)ξi(t))2 +2σξi2 ), +(27)
+

where Vmeta +is the history-dependent potential acting on the current values of the colvars +ξ, +and depends only parametrically on the previous values of the colvars. +Vmeta is constructed as a +sum of Ncv-dimensional +repulsive Gaussian “hills", whose height is a chosen energy constant +W, +and whose centers are the previously explored configurations + (ξ(δt),ξ(2δt), &ApplyFunction;). +

During the simulation, the system evolves towards the nearest minimum of the “effective" potential of mean +force Ã(ξ), +which is the sum of the “real" underlying potential of mean force +A(ξ) and the the +metadynamics potential, Vmeta(ξ). +Therefore, at any given time the probability of observing the configuration +ξ is proportional +to exp &ApplyFunction; (Ã(ξ)κBT ): +this is also the probability that a new Gaussian “hill" is added at that configuration. +If the simulation is run for a sufficiently long time, each local minimum is canceled out +by the sum of the Gaussian “hills". At that stage the “effective" potential of mean force +Ã(ξ) is constant, and +Vmeta(ξ) is an estimator of the “real" +potential of mean force A(ξ), +save for an additive constant:

+ +A(ξ) Vmeta(ξ)+K +(28)
+

Such estimate of the free energy can be provided by enabling writeFreeEnergyFile. +Assuming that the set of collective variables includes all relevant degrees of freedom, the +predicted error of the estimate is a simple function of the correlation times of the colvars +τξi, and of the user-defined +parameters W, +σξi and + + +δt +[25]. In typical applications, a good rule of thumb can be to choose the ratio +Wδt much smaller +than κBT τξ, where +τξ is the longest +among ξ's +correlation times: σξi +then dictates the resolution of the calculated PMF. +

If the metadynamics parameters are chosen correctly, after an equilibration time, +te, +the estimator provided by eq. 28 oscillates on time around the “real" free energy, thereby a +better estimate of the latter can be obtained as the time average of the bias potential after +te +[2627]:

+ +A (ξ) = 1 +ttotte∫ + tettot +Vmeta(ξ,t)dt +(29)
+

where te +is the time after which the bias potential grows (approximately) evenly during the simulation and +ttot is the +total simulation time. The free energy calculated according to eq. 29 can thus be obtained averaging on +time multiple time-dependent free energy estimates, that can be printed out through the keyword +keepFreeEnergyFiles. An alternative is to obtain the free energy profiles by summing the hills +added during the simulation; the hills trajectory can be printed out by enabling the option +writeHillsTrajectory. +

+ +

+
6.5.1 Treatment of the PMF boundaries
+

+

In typical scenarios the Gaussian hills of a metadynamics potential are interpolated and summed +together onto a grid, which is much more efficient than computing each hill independently at every +step (the keyword useGrids is on by default). This numerical approximation typically yields +negligible errors in the resulting PMF [1]. However, due to the finite thickness of the Gaussian +function, the metadynamics potential would suddenly vanish each time a variable exceeds its grid +boundaries. +

To avoid such discontinuity the Colvars metadynamics code will keep an explicit copy +of each hill that straddles a grid's boundary, and will use it to compute metadynamics +forces outside the grid. This measure is taken to protect the accuracy and stability of +a metadynamics simulation, except in cases of “natural" boundaries (for example, the +[0 : 180] interval +of an angle colvar) or when the flags hardLowerBoundary and hardUpperBoundary are explicitly set +by the user. Unfortunately, processing explicit hills alongside the potential and force grids +could easily become inefficient, slowing down the simulation and increasing the state file's +size. +

In general, it is a good idea to define a repulsive potential to avoid hills from coming too close to the +grid's boundaries, for example as a harmonicWalls restraint (see 6.8).
+

Example: Using harmonic walls to protect the grid's boundaries.

+
+

colvar {
  name r
  distance { ... }
  upperBoundary 15.0
  width 0.2
}

metadynamics {
  name meta_r
  colvars r
  hillWeight 0.001
  hillWidth 2.0
}

harmonicWalls {
  name wall_r
  colvars r
  upperWalls 13.0
  upperWallConstant 2.0
}

+
+

In the colvar r, the distance function used has a lowerBoundary automatically set to 0 by +default, thus the keyword lowerBoundary itself is not mandatory and hardLowerBoundary +is set to yes internally. However, upperBoundary does not have such a “natural" choice of +value. The metadynamics potential meta_r will individually process any hill whose center is too +close to the upperBoundary, more precisely within fewer grid points than 6 times the Gaussian +σ + + +parameter plus one. It goes without saying that if the colvar r represents a distance between two +freely-moving molecules, it will cross this “threshold" rather frequently. +

In this example, where the value of hillWidth +(2σ) amounts +to 2 grid points, the threshold is 6+1 = 7 grid points away from upperBoundary. In explicit units, the width +of r is +wr = 0.2 Å, and the +threshold is 15.0 - 7×0.2 += 13.6 Å. +

The wall_r restraint included in the example prevents this: the position of its upperWall is 13 Å, i.e. 3 grid +points below the buffer's threshold (13.6 Å). For the chosen value of upperWallConstant, the energy of the wall_r +bias at r = rupper += 13.6 Å is:

+ +E = 1 +2k (rrupper +wr )2 = 1 +22.0 (3)2 = 9kcalmol +
+

which results in a relative probability exp &ApplyFunction; (EκBT ) +3×107 that r +crosses the threshold. The probability that r exceeds upperBoundary, which is further away, has +also become vanishingly small. At that point, you may want to set hardUpperBoundary to +yes for r, and let meta_r know that no special treatment near the grid's boundaries will be +needed. +

What is the impact of the wall restraint onto the PMF? Not a very complicated one: the PMF reconstructed +by metadynamics will simply show a sharp increase in free-energy where the wall potential kicks in +(r  > +13 Å). You may then choose between using the PMF only up until that point and discard the rest, or +subtracting the energy of the harmonicWalls restraint from the PMF itself. Keep in mind, however, that the +statistical convergence of metadynamics may be less accurate where the wall potential is +strong. +

In summary, although it would be simpler to set the wall's position upperWall and the grid's boundary +upperBoundary to the same number, the finite width of the Gaussian hills calls for setting the former +strictly within the latter. +

+ +

+
6.5.2 Required metadynamics keywords
+

+

To enable a metadynamics-based calculation, a metadynamics {...} block must be included in the +Colvars configuration file. +

By default, metadynamics bias energy and forces will be recorded onto a grid, the parameters of +which can be defined within the definition of each colvar, as described in 4.17. +

Other required keywords will be specified within the metadynamics block: these +are colvars (the names of the variables involved), hillWeight (the weight parameter +W), and the +widths 2σ +of the Gaussian hills in each dimension that can be given either as the single dimensionless parameter +hillWidth, or explicitly for each colvar with gaussianSigmas. +

+ + +

+
6.5.3 Output files
+

+

When interpolating grids are enabled (default behavior), the PMF is written by default every +colvarsRestartFrequency steps to the file output.pmf in multicolumn text format (3.8.4). The following +two options allow to disable or control this behavior and to track statistical convergence: +

+ + +

+
6.5.4 Performance optimization
+

The following options control the computational cost of metadynamics calculations, but do not affect +results. Default values are chosen to minimize such cost with no loss of accuracy. + + + +

+
6.5.5 Ensemble-Biased Metadynamics
+

+

The ensemble-biased metadynamics (EBMetaD) approach [28] is designed to reproduce a target +probability distribution along selected collective variables. Standard metadynamics can be seen as a +special case of EBMetaD with a flat distribution as target. This is achieved by weighing the Gaussian +functions used in the metadynamics approach by the inverse of the target probability distribution:

+ + +VEBmetaD (ξ (t)) = t=δt,2δt,t<t W +exp &ApplyFunction; (Sρ)ρexp(ξ(t))i=1Ncv exp &ApplyFunction; ((ξi(t)ξi(t))2 +2σξi2 ), +(30)
+

where ρexp(ξ) is the target +probability distribution and Sρ = ∫ + &ApplyFunction;ρexp(ξ)log &ApplyFunction; ρexp(ξ)dξ +its corresponding differential entropy. The method is designed so that during the simulation the resulting distribution of +the collective variable ξ +converges to ρexp(ξ). +A practical application of EBMetaD is to reproduce an “experimental" probability distribution, +for example the distance distribution between spectroscopic labels inferred from Förster +resonance energy transfer (FRET) or double electron-electron resonance (DEER) experiments +[28]. +

The PMF along ξ +can be estimated from the bias potential and the target ditribution [28]:

+ +A(ξ) VEBmetaD(ξ)κBT log &ApplyFunction; ρexp(ξ) +(31)
+

and obtained by enabling writeFreeEnergyFile. Similarly to eq. 29, a more accurate estimate of the +free energy can be obtained by averaging (after an equilibration time) multiple time-dependent free +energy estimates (see keepFreeEnergyFiles). +

The following additional options define the configuration for the ensemble-biased metadynamics +approach:

+ +

As with standard metadynamics, multidimensional probability distributions can be targeted using a + + +single metadynamics block using multiple colvars and a multidimensional target distribution file (see +3.8.4). Instead, multiple probability distributions on different variables can be targeted separately in +the same simulation by introducing multiple metadynamics blocks with the ebMeta option. +
+

Example: EBmetaD configuration for a single variable.

+
+

colvar {
  name r 
  distance {
    group1 { atomNumbers 991 992 }
    group2 { atomNumbers 1762 1763 }
  }
  upperBoundary  100.0 
  width            0.1 
}

metadynamics {
  name              ebmeta
  colvars           r
  hillWeight        0.01
  hillWidth         3.0
  ebMeta            on
  targetDistFile    targetdist1.dat
  ebMetaEquilSteps  500000
}

+
+

where targetdist1.dat is a text file in “multicolumn" format (3.8.4) with the same width as the variable r +(0.1 in this case):

+ + + + + + +
# 1
# 0.0 0.1 1000 0
0.05 0.0012
0.15 0.0014
99.95 0.0010
+

Tip: Besides setting a meaningful value for targetDistMinVal, the exploration of unphysically low +values of the target distribution (which would lead to very large hills and possibly numerical instabilities) +can be also prevented by restricting sampling to a given interval, using e.g. harmonicWalls restraint +(6.8). +

+ +

+
6.5.6 Well-tempered metadynamics
+

The following options define the configuration for the “well-tempered" metadynamics approach +[29]: + + + +

+
6.5.7 Multiple-walker metadynamics
+

Metadynamics calculations can be performed concurrently by multiple replicas that share a common +history. This variant of the method is called multiple-walker metadynamics [30]: the Gaussian hills of all +replicas are periodically combined into a single biasing potential, intended to converge to a single +PMF. +

In the implementation here described [1], replicas communicate through files. This arrangement +allows launching the replicas either (1) as a bundle (i.e. a single job in a cluster's queueing system) or (2) +as fully independent runs (i.e. as separate jobs for the queueing system). One advantage of the use case +(1) is that an identical Colvars configuration can be used for all replicas (otherwise, replicaID needs to + + +be manually set to a different string for each replica). However, the use case (2) is less demanding in +terms of high-performance computing resources: a typical scenario would be a computer +cluster (including virtual servers from a cloud provider) where not all nodes are connected to +each other at high speed, and thus each replica runs on a small group of nodes or a single +node. +

Whichever way the replicas are started (coupled or not), a shared filesystem is needed so that each +replica can read the files created by the others: paths to these files are stored in the shared file +replicasRegistry. This file, and those listed in it, are read every replicaUpdateFrequency steps. Each +time the Colvars state file is written (for example, colvarsRestartFrequency steps), the file +named:
output.colvars.name.replicaID.state
is written as well; this file contains only the state of the metadynamics bias, which the other replicas will +read in turn. In between the times when this file is modified/replaced, new hills are also temporarily written +to the file named:
output.colvars.name.replicaID.hills
Both files are only used for communication, and may be deleted after the replica begins writing files with a +new output.
+

Example: Multiple-walker metadynamics with file-based communication.

+
+

metadynamics {
  name mymtd
  colvars x
  hillWeight 0.001
  newHillFrequency 1000
  hillWidth 3.0
  
  multipleReplicas       on
  replicasRegistry       /shared-folder/mymtd-replicas.txt
  replicaUpdateFrequency 50000  # Best if larger than newHillFrequency
}

+
+

The following are the multiple-walkers related options: +

+ + +

+

6.6 Harmonic restraints

+

+

The harmonic biasing method may be used to enforce fixed or moving restraints, including variants of +Steered and Targeted MD. Within energy minimization runs, it allows for restrained minimization, e.g. to +calculate relaxed potential energy surfaces. In the context of the Colvars module, harmonic potentials are + + +meant according to their textbook definition:

+ +V (ξ ) = 1 +2k (ξ ξ0 +wξ )2 +(32)
+

There are two noteworthy aspects of this expression: +

    +
  1. Because the standard coefficient of 12 + of the harmonic potential is included, this expression differs from harmonic bond and angle + potentials historically used in common force fields, where the factor was typically omitted + resulting in a non-standard definition of the force constant. +
  2. +
  3. The variable ξ + is not only centered at ξ0, + but is also scaled by its characteristic length scale wξ + (keyword width). The resulting dimensionless variable z = (ξ ξ0)wξ + is typically easier to treat numerically: for example, when the forces typically experienced by + ξ + are much smaller than kwξ + and k + is chosen equal to κBT + (thermal energy), the resulting probability distribution of z + is approximately a Gaussian with mean equal to 0 and standard deviation equal to 1. +

    This property can be used for setting the force constant in umbrella-sampling ensemble runs: + if the restraint centers are chosen in increments of wξ, + the resulting distributions of ξ + are most often optimally overlapped. In regions where the underlying free-energy landscape + induces highly skewed distributions of ξ, + additional windows may be added as needed, with spacings finer than wξ.

+

Beyond one dimension, the use of a scaled harmonic potential also allows a standard definition of a +multi-dimensional restraint with a unified force constant:

+ +V (ξ1, &ApplyFunction;,ξM) = 1 +2ki=1M (ξiξ0 +wξ )2 +(33)
+

If one-dimensional or homogeneous multi-dimensional restraints are defined, and there are no other uses for the +parameter wξ, width can be +left at its default value of 1. +

A harmonic restraint is defined by a harmonic {...} block, which may contain the following keywords: +

+ +

Tip: A complex set of restraints can be applied to a system, by defining several colvars, and applying +one or more harmonic restraints to different groups of colvars. In some cases, dozens of colvars can be +defined, but their value may not be relevant: to limit the size of the colvars trajectory file, it may be wise to +disable outputValue for such “ancillary" variables, and leave it enabled only for “relevant" +ones. +

+ +

+
6.6.1 Moving restraints: steered molecular dynamics
+

+

The following options allow to change gradually the centers of the harmonic restraints during a +simulations. When the centers are changed continuously, a steered MD in a collective variable space is +carried out. +

+ +

Note on restarting moving restraint simulations: Information about the current step and stage of a +simulation with moving restraints is stored in the restart file (state file). Thus, such simulations can be run +in several chunks, and restarted directly using the same colvars configuration file. In case of a restart, the +values of parameters such as targetCenters, targetNumSteps, etc. should not be changed +manually. +

+ +

+
6.6.2 Moving restraints: umbrella sampling
+

+

The centers of the harmonic restraints can also be changed in discrete stages: in this cases a +one-dimensional umbrella sampling simulation is performed. The sampling windows in simulation are +calculated in sequence. The colvars trajectory file may then be used both to evaluate the correlation times +between consecutive windows, and to calculate the frequency distribution of the colvar of interest in each +window. Furthermore, frequency distributions on a predefined grid can be automatically obtained by using +the histogram bias (see 6.11). +

To activate an umbrella sampling simulation, the same keywords as in the previous section can be +used, with the addition of the following:

+ + +

+
6.6.3 Changing force constant
+

+

The force constant of the harmonic restraint may also be changed to equilibrate [31]. +

+ + +

+

6.7 Computing the work of a changing restraint

+

+

If the restraint centers or force constant are changed continuosly (targetNumStages undefined) it is +possible to record the net work performed by the changing restraint:

+ + +

+

6.8 Harmonic wall restraints

+

+

The harmonicWalls {...} bias is closely related to the harmonic bias (see 6.6), with the following two +differences: (i) instead of a center a lower wall and/or an upper wall are defined, outside of which the bias +implements a half-harmonic potential;

+ +V (ξ ) = { 1 2k (ξξupper +wξ ) 2 ifξ > ξupper + 0 ifξlower ξ ξupper + 1 2k (ξξlower +wξ ) 2 ifξ < ξlower + +(34)
+

where ξlower +and ξupper are +the lower and upper wall thresholds, respectively; (ii) because an interval between two walls is defined, +only scalar variables can be used (but any number of variables can be defined, and the wall bias is +intrinsically multi-dimensional).
+

Note: this bias replaces the keywords lowerWall, lowerWallConstant, upperWall and +upperWallConstant defined in the colvar context. Those keywords are deprecated. +

The harmonicWalls bias implements the following options:

+ +

Example 1: harmonic walls for one variable with two different force constants.

+
+

harmonicWalls {
  name  mywalls
  colvars    dist
  lowerWalls  22.0 
  upperWalls  38.0 
  lowerWallConstant  2.0 
  upperWallConstant 10.0 
}

+
+

Example 2: harmonic walls for two variables with a single force constant.

+
+

harmonicWalls {
  name  mywalls
  colvars       phi    psi
  lowerWalls -180.0    0.0
  upperWalls    0.0  180.0
  forceConstant 5.0 
}

+
+ +

+

6.9 Linear restraints

+

+

The linear keyword defines a linear potential:

+ +V (ξ ) = k (ξ ξ0 +wξ ) +(35)
+

whose force is simply given by the constant kwξ +itself:

+ +f(ξ) = kwξ +(36)
+

This type of bias is therefore most useful in situations where a constant force is desired. As all other +restraints, it can be defined on one or more CVs, with each contribution added to the total potential and the +parameters wξ +determining the relative magnitude for each. +

Example: A possible use case of the linear bias is mimicking a constant electric field acting on a +specific particle, or the center of mass of many particles. In the following example, a linear restraint is +applied on a distanceZ variable (4.3.2), generating a constant force parallel to the Z axis of magnitude +5 energy unit/length unit:

+
+

colvar {
  name z
  distanceZ {
    ...
  }
}

linear {
  colvars z
  forceConstant 5.0
  centers 0.0
}

+
+

Another useful application of a linear restraint is to enforce experimental constraints in a simulation, +with a lower non-equilibrium work than e.g. harmonic restraints [32]. There is generally a unique strength +of bias for each CV center, which means you must know the bias force constant specifically for the center +of the CV. This force constant may be found by using experiment directed simulation described in section + + +6.10. +

+ + +

+

6.10 Adaptive Linear Bias/Experiment Directed Simulation

+

+

Experiment directed simulation applies a linear bias with a changing force constant. Please cite White +and Voth [33] when using this feature. As opposed to that reference, the force constant here is scaled by +the width corresponding to the biased colvar. In White and Voth, each force constant is scaled by the +colvars set center. The bias converges to a linear bias, after which it will be the minimal possible bias. You +may also stop the simulation, take the median of the force constants (ForceConst) found in the +colvars trajectory file, and then apply a linear bias with that constant. All the notes about units +described in sections 6.9 and 6.6 apply here as well. This is not a valid simulation of any +particular statistical ensemble and is only an optimization algorithm until the bias has +converged. +

+ + +

+

6.11 Multidimensional histograms

+

+

The histogram feature is used to record the distribution of a set of collective variables in the form of a +N-dimensional histogram. Defining such a histogram is generally useful for analysis purposes, but it has +no effect on the simulation. +

Example 1: the two-dimensional histogram of a distance and an angle can be generated +using the configuration below. The histogram code requires that each variable is a scalar +number that is confined within a pre-defined interval. The interval's boundaries may be +specified by hand (e.g. through lowerBoundary and upperBoundary in the variable definition), +or auto-detected based on the type of function. In this example, the lower boundary for the +distance variable “r" is automatically set to zero, and interval for the three-body angle “theta" is +0 and +180: however, that +an upper boundary for the distance “r" still needs to be specified manually. The grid spacings for the two variables +are 0.2 length +unitand 3.0, +respectively.

+
+

colvar {
  name r
  width 0.2
  upperBoundary 20.0
  distance { ... }
}

colvar {
  name theta
  width 3.0
  dihedral { ... }
}

histogram {
  name hist2d
  colvars r theta
}

+
+

Example 2: This example is similar to the previous one, but with the important difference +that the parameters for the histogram's grid are defined explicitly for this histogram instance. +Therefore, this histogram's grid may differ from the one defined from parameters embedded in +the colvar { ... } block (for example, narrower intervals and finer grid spacings may be +selected).

+
+

colvar {
  name r
  upperBoundary 20.0
  distance { ... }
}

colvar {
  name theta
  dihedral { ... }
}

histogram {
  name hist2d
  colvars r theta
  histogramGrid {
    widths  0.1 1.0
    lowerBoundaries   2.0 30.0
    upperBoundaries  10.0 90.0
  }
}

+
+

The standard keywords below are used to control the histogram's computation and to select the +variables that are sampled. See also 6.11.1 for keywords used to define the grid, 6.11.2 for output +parameters and 6.11.3 for more advanced keywords. +

+ + +

+
6.11.1 Defining grids for multidimensional histograms
+

+

Grid parameters for the histogram may be provided at the level of the individual variables, or via a +dedicated configuration block histogramGrid { …} inside the configuration of this histogram. The options +supported inside this block are: +

+ + +

+
6.11.2 Output options for multi-dimensional histograms
+

+

The accumulated histogram is written in the Colvars state file, allowing for its accumulation +across continued runs. Additionally, the following files are written depending on the histogram's +dimensionality: +

+ +

As with any other biasing and analysis method, when a histogram is applied to an extended-system +colvar (4.19), it accesses the value of the extended coordinate rather than that of the actual +colvar. This can be overridden by enabling the bypassExtendedLagrangian option. A joint +histogram of the actual colvar and the extended coordinate may be collected by specifying the +colvar name twice in a row in the colvars parameter (e.g. colvars myColvar myColvar): +the first instance will be understood as the actual colvar, and the second, as the extended +coordinate. +

+ + +

+

6.12 Probability distribution-restraints

+

+

The histogramRestraint bias implements a continuous potential of many variables (or of a single +high-dimensional variable) aimed at reproducing a one-dimensional statistical distribution that is provided by the +user. The M +variables (ξ1, &ApplyFunction;,ξM) +are interpreted as multiple observations of a random variable +ξ +with unknown probability distribution. The potential is minimized when the histogram +h(ξ), estimated as a sum of Gaussian +functions centered at (ξ1, &ApplyFunction;,ξM), is equal +to the reference histogram h0(ξ): +

+ +V (ξ1, &ApplyFunction;,ξM) = 1 +2k∫ + (h(ξ)h0(ξ))2dξ +(37)
+
+ +h (ξ ) = 1 +M2πσ2i=1Mexp &ApplyFunction; ((ξ ξi)2 +2σ2 ) +(38)
+

When used in combination with a distancePairs multi-dimensional variable, this bias +implements the refinement algorithm against ESR/DEER experiments published by Shen et al +[34]. +

This bias behaves similarly to the histogram bias with the gatherVectorColvars option, with the +important difference that all variables are gathered, resulting in a one-dimensional histogram. Future +versions will include support for multi-dimensional histograms. +

The list of options is as follows:

+ +

+

+ +

+

7 fix_modify command-line interface: list of commands

+

This section lists all the commands used in LAMMPS to control the behavior of the Colvars module from +within a run script using the fix_modify command. + + +

+

7.1 Commands to manage the Colvars module

+

+
+

fix_modify Colvars addenergy <E> 
    Add an energy to the MD engine (no effect in VMD)
    Parameters
    E : float - Amount of energy to add

+
+

fix_modify Colvars config <conf> 
    Read configuration from the given string
    Parameters
    conf : string - Configuration string

+
+

fix_modify Colvars configfile <conf_file> 
    Read configuration from a file
    Parameters
    conf_file : string - Path to configuration file

+
+

fix_modify Colvars delete 
    Delete this Colvars module instance (VMD only)

+
+
+

fix_modify Colvars featurereport 
    Return a summary of Colvars features used so far and their citations
    Returns
    report : string - Feature report and citations

+
+

fix_modify Colvars frame [frame] 
    Get or set current frame number (VMD only)
    Parameters
    frame : integer - Frame number (optional)
    Returns
    frame : integer - Frame number

+
+

fix_modify Colvars getatomappliedforces 
    Get the list of forces applied by Colvars to atoms
    Returns
    forces : array of arrays of floats - Atomic forces

+
+

fix_modify Colvars getatomappliedforcesmax 
    Get the maximum norm of forces applied by Colvars to atoms
    Returns
    force : float - Maximum atomic force

+
+

fix_modify Colvars getatomappliedforcesmaxid 
    Get the atom ID with the largest applied force
    Returns
    id : int - ID of the atom with the maximum atomic force

+
+

fix_modify Colvars getatomappliedforcesrms 
    Get the root-mean-square norm of forces applied by Colvars to atoms
    Returns
    force : float - RMS atomic force

+
+

fix_modify Colvars resetatomappliedforces 
    Reset forces applied by Colvars to atoms

+
+

fix_modify Colvars getatomids 
    Get the list of indices of atoms used in Colvars
    Returns
    indices : array of ints - Atom indices

+
+

fix_modify Colvars getatomcharges 
    Get the list of charges of atoms used in Colvars
    Returns
    charges : array of floats - Atomic charges

+
+
+

fix_modify Colvars getatommasses 
    Get the list of masses of atoms used in Colvars
    Returns
    masses : array of floats - Atomic masses

+
+

fix_modify Colvars getatompositions 
    Get the list of cached positions of atoms used in Colvars
    Returns
    positions : array of arrays of floats - Atomic positions

+
+

fix_modify Colvars getatomtotalforces 
    Get the list of cached total forces of atoms used in Colvars
    Returns
    forces : array of arrays of floats - Atomic total foces

+
+

fix_modify Colvars getconfig 
    Get the module's configuration string read so far
    Returns
    conf : string - Current configuration string

+
+

fix_modify Colvars getenergy 
    Get the current Colvars energy
    Returns
    E : float - Amount of energy (internal units)

+
+

fix_modify Colvars getnumactiveatomgroups 
    Get the number of atom groups that currently have positive ref counts
    Returns
    count : integer - Total number of atom groups

+
+

fix_modify Colvars getnumactiveatoms 
    Get the number of atoms that currently have positive ref counts
    Returns
    count : integer - Total number of atoms

+
+

fix_modify Colvars getnumatoms 
    Get the number of requested atoms, including those not in use now
    Returns
    count : integer - Total number of atoms

+
+

fix_modify Colvars getstepabsolute 
    Get the current step number of the simulation (including restarts)
    Returns
    step : int - Absolute step number

+
+
+

fix_modify Colvars getsteprelative 
    Get the current step number from the start of this job
    Returns
    step : int - Relative step number

+
+

fix_modify Colvars help [command] 
    Get the help string of the Colvars scripting interface
    Parameters
    command : string - Get the help string of this specific command (optional) +
    Returns
    help : string - Help string

+
+

fix_modify Colvars languageversion 
    Get the C++ language version number
    Returns
    version : string - C++ language version

+
+

fix_modify Colvars list [param] 
    Return a list of all variables or biases
    Parameters
    param : string - "colvars" or "biases"; default is "colvars" (optional)
    Returns
    list : sequence of strings - List of elements

+
+

fix_modify Colvars listcommands 
    Get the list of script functions, prefixed with "cv_", "colvar_" or "bias_" +
    Returns
    list : sequence of strings - List of commands

+
+

fix_modify Colvars listindexfiles 
    Get a list of the index files loaded in this session
    Returns
    list : sequence of strings - List of index file names

+
+

fix_modify Colvars listinputfiles 
    Get a list of all input/configuration files loaded in this session
    Returns
    list : sequence of strings - List of file names

+
+

fix_modify Colvars load <prefix> 
    Load data from a state file into all matching colvars and biases
    Parameters
    prefix : string - Path to existing state file or input prefix

+
+

fix_modify Colvars loadfromstring <buffer> 
    Load state data from a string into all matching colvars and biases
    Parameters
    buffer : string - String buffer containing the state information

+
+

fix_modify Colvars molid [molid] 
    Get or set the molecule ID on which Colvars is defined (VMD only)
    Parameters
    molid : integer - New molecule ID; -1 means undefined (optional)
    Returns
    molid : integer - Current molecule ID

+
+

fix_modify Colvars printframe 
    Return the values that would be written to colvars.traj
    Returns
    values : string - The values

+
+

fix_modify Colvars printframelabels 
    Return the labels that would be written to colvars.traj
    Returns
    Labels : string - The labels

+
+

fix_modify Colvars reset 
    Delete all internal configuration

+
+

fix_modify Colvars resetindexgroups 
    Clear the index groups loaded so far, allowing to replace them

+
+

fix_modify Colvars save <prefix> 
    Change the prefix of all output files and save them
    Parameters
    prefix : string - Output prefix with trailing ".colvars.state" gets removed) +

+
+

fix_modify Colvars savetostring 
    Write the Colvars state to a string and return it
    Returns
    state : string - The saved state

+
+

fix_modify Colvars targettemperature [T] 
    Get/set target temperature, overriding internally what the MD engine reports +
    Parameters
    T : float - New target temperature in K (internal use) (optional)
    Returns
    T : float - Current target temperature in K

+
+

fix_modify Colvars timestep [dt] 
    Get/set integration timestep, overriding internally what the MD engine reports +
    Parameters
    dt : float - New integration timestep in MD engine units (optional)
    Returns
    dt : float - Current integration timestep in MD engine units

+
+

fix_modify Colvars units [units] 
    Get or set the current Colvars unit system
    Parameters
    units : string - The new unit system (optional)
    Returns
    units : string - The current unit system

+
+

fix_modify Colvars update 
    Recalculate colvars and biases

+
+

fix_modify Colvars version 
    Get the Colvars Module version string
    Returns
    version : string - Colvars version

+
+ +

+

7.2 Commands to manage individual collective variables

+

+
+

fix_modify Colvars colvar name addforce <force> 
    Apply the given force onto this colvar (no effects outside run)
    Parameters
    force : float or array - Applied force; must match colvar dimensionality
    Returns
    force : float or array - Applied force; matches colvar dimensionality

+
+

fix_modify Colvars colvar name communicateforces 
    Communicate bias forces from this colvar to atoms

+
+
+

fix_modify Colvars colvar name cvcflags <flags> 
    Enable or disable individual components by setting their active flags
    Parameters
    flags : integer array - Zero/nonzero value disables/enables the CVC

+
+

fix_modify Colvars colvar name delete 
    Delete this colvar, along with all biases that depend on it

+
+

fix_modify Colvars colvar name get <feature> 
    Get the value of the given feature for this colvar
    Parameters
    feature : string - Name of the feature
    Returns
    state : 1/0 - State of the given feature

+
+

fix_modify Colvars colvar name getappliedforce 
    Return the total of the forces applied to this colvar
    Returns
    force : float - Applied force; matches the colvar dimensionality

+
+

fix_modify Colvars colvar name resetbiasforce 
    Return the total of the forces applied to this colvar

+
+

fix_modify Colvars colvar name getatomgroups 
    Return the atom indices used by this colvar as a list of lists
    Returns
    groups : array of arrays of ints - Atom indices

+
+

fix_modify Colvars colvar name getatomids 
    Return the list of atom indices used by this colvar
    Returns
    indices : array of ints - Atom indices

+
+

fix_modify Colvars colvar name getconfig 
    Return the configuration string of this colvar
    Returns
    conf : string - Current configuration string

+
+

fix_modify Colvars colvar name getgradients 
    Return the atomic gradients of this colvar
    Returns
    gradients : array of arrays of floats - Atomic gradients

+
+

fix_modify Colvars colvar name gettotalforce 
    Return the sum of internal and external forces to this colvar
    Returns
    force : float - Total force; matches the colvar dimensionality

+
+

fix_modify Colvars colvar name getvolmapids 
    Return the list of volumetric map indices used by this colvar

+
+

fix_modify Colvars colvar name help [command] 
    Get a help summary or the help string of one colvar subcommand
    Parameters
    command : string - Get the help string of this specific command (optional) +
    Returns
    help : string - Help string

+
+

fix_modify Colvars colvar name modifycvcs <confs> 
    Modify configuration of individual components by passing string arguments +
    Parameters
    confs : sequence of strings - New configurations; empty strings are skipped +

+
+

fix_modify Colvars colvar name run_ave 
    Get the current running average of the value of this colvar
    Returns
    value : float or array - Averaged value; matches the colvar dimensionality +

+
+

fix_modify Colvars colvar name set <feature> <value> 
    Set the given feature of this colvar to a new value
    Parameters
    feature : string - Name of the feature
    value : string - String representation of the new feature value

+
+

fix_modify Colvars colvar name state 
    Print a string representation of the feature state of this colvar
    Returns
    state : string - The feature state

+
+

fix_modify Colvars colvar name type 
    Get the type description of this colvar
    Returns
    type : string - Type description

+
+

fix_modify Colvars colvar name update 
    Recompute this colvar and return its up-to-date value
    Returns
    value : float or array - Current value; matches the colvar dimensionality +

+
+

fix_modify Colvars colvar name value 
    Get the current value of this colvar
    Returns
    value : float or array - Current value; matches the colvar dimensionality +

+
+

fix_modify Colvars colvar name width 
    Get the width of this colvar
    Returns
    width : float - Value of the width

+
+ +

+

7.3 Commands to manage individual biases

+

+
+

fix_modify Colvars bias name bin 
    Get the current grid bin index (flattened if more than 1d)
    Returns
    bin : integer - Bin index

+
+

fix_modify Colvars bias name bincount [index] 
    Get the number of samples at the given grid bin (1D ABF only for now)
    Parameters
    index : integer - Grid index; defaults to current bin (optional)
    Returns
    samples : integer - Number of samples

+
+

fix_modify Colvars bias name local_sample_count [radius] 
    Get the number of samples around the current binsamples : integer - Number of samples +
    Parameters
    radius : integer - Sum over radius bins around current bin (optional)

+
+

fix_modify Colvars bias name binnum 
    Get the total number of grid points of this bias (1D ABF only for now)
    Returns
    Bins : integer - Number of grid points

+
+

fix_modify Colvars bias name delete 
    Delete this bias

+
+

fix_modify Colvars bias name energy 
    Get the current energy of this bias
    Returns
    E : float - Energy value

+
+

fix_modify Colvars bias name get <feature> 
    Get the value of the given feature for this bias
    Parameters
    feature : string - Name of the feature
    Returns
    state : 1/0 - State of the given feature

+
+

fix_modify Colvars bias name getconfig 
    Return the configuration string of this bias
    Returns
    conf : string - Current configuration string

+
+

fix_modify Colvars bias name help [command] 
    Get a help summary or the help string of one bias subcommand
    Parameters
    command : string - Get the help string of this specific command (optional) +
    Returns
    help : string - Help string

+
+

fix_modify Colvars bias name load <prefix> 
    Load data into this bias
    Parameters
    prefix : string - Read from a file with this name or prefix

+
+

fix_modify Colvars bias name loadfromstring <buffer> 
    Load state data into this bias from a string
    Parameters
    buffer : string - String buffer containing the state information

+
+

fix_modify Colvars bias name save <prefix> 
    Save data from this bias into a file with the given prefix
    Parameters
    prefix : string - Prefix for the state file of this bias

+
+

fix_modify Colvars bias name savetostring 
    Save data from this bias into a string and return it
    Returns
    state : string - The bias state

+
+

fix_modify Colvars bias name set <feature> <value> 
    Set the given feature of this bias to a new value
    Parameters
    feature : string - Name of the feature
    value : string - String representation of the new feature value

+
+

fix_modify Colvars bias name share 
    Share bias information with other replicas (multiple-walker scheme)

+
+

fix_modify Colvars bias name state 
    Print a string representation of the feature state of this bias
    Returns
    state : string - String representation of the bias features

+
+

fix_modify Colvars bias name type 
    Print the type of this bias object
    Returns
    type : string - Type of this bias object (e.g. metadynamics)

+
+

fix_modify Colvars bias name update 
    Recompute this bias and return its up-to-date energy
    Returns
    E : float - Energy value

+
+

+

+ +

+

8 Syntax changes from older versions

+

+

The following is a list of syntax changes in Colvars since its first release. Many of the older keywords +are still recognized by the current code, thanks to specific compatibility code. This is not a list of new +features: its primary purpose is to make you aware of those improvements that affect the use of old +configuration files with new versions of the code. +

Note: if you are using any of the NAMD and VMD tutorials:
https://www.ks.uiuc.edu/Training/Tutorials/
please be aware that several of these tutorials are not actively maintained: for those cases, this list will +help you reconcile any inconsistencies. +

+ +

+

+ +

+

9 Compilation notes

+

+

The Colvars module is typically built using the recipes of each supported software package: for this +reason, no installation instructions are needed, and the vast majority of the features described in this +manual are supported in the most common builds of each package. +

This section lists the few cases where the choice of compilation settings affects the availability +features in the Colvars module. +

+ +

+

+

References

+

+

+

+ [1]   Giacomo Fiorin, Michael L. Klein, and Jérôme Hénin. Using collective variables to + drive molecular dynamics simulations. Mol. Phys., 111(22-23):3345--3362, 2013. +

+

+ [2]   Aidan P. Thompson, H. Metin Aktulga, Richard Berger, Dan S. Bolintineanu, W. Michael + Brown, Paul S. Crozier, Pieter J. in't Veld, Axel Kohlmeyer, Stan G. Moore, Trung Dac + Nguyen, Ray Shan, Mark J. Stevens, Julien Tranchida, Christian Trott, and Steven J. + Plimpton. LAMMPS - a flexible simulation tool for particle-based materials modeling at the + atomic, meso, and continuum scales. Comp. Phys. Comm., 271:108171, 2022. +

+

+ [3]   M. Iannuzzi, A. Laio, and M. Parrinello. Efficient exploration of reactive potential energy + surfaces using car-parrinello molecular dynamics. Phys. Rev. Lett., 90(23):238302, 2003. +

+

+ [4]   E A Coutsias, C Seok, and K A Dill. Using quaternions to calculate RMSD. J. Comput. +Chem., 25(15):1849--1857, 2004. +

+

+ [5]   Mina Ebrahimi and Jérôme Hénin. Symmetry-adapted restraints for binding free energy + calculations. Journal of Chemical Theory and Computation, 18(4):2494--2502, 2022. +

+

+ [6]   Haohao Fu, Wensheng Cai, Jérôme Hénin, Benoît Roux, and Christophe Chipot. + New coarse variables for the accurate determination of standard binding free energies. J. +Chem. Theory. Comput., 13(11):5173--5178, 2017. +

+

+ [7]   G. D. Leines and B. Ensing. Path finding on high-dimensional free energy landscapes. + Phys. Rev. Lett., 109:020601, 2012. +

+

+ [8]   Davide Branduardi, Francesco Luigi Gervasio, and Michele Parrinello. From a to b in free + energy space. J Chem Phys, 126(5):054103, 2007. + + +

+

+ [9]   F. Comitani L. Hovan and F. L. Gervasio. Defining an optimal metric for the path + collective variables. J. Chem. Theory Comput., 15:25--32, 2019. +

+

+ [10]   Haochuan Chen, Han Liu, Heying Feng, Haohao Fu, Wensheng Cai, Xueguang Shao, + and Christophe Chipot. Mlcv: Bridging Machine-Learning-Based Dimensionality Reduction + and Free-Energy Calculation. J. Chem. Inf. Model., 62(1):1--8, 2022. +

+

+ [11]   Marco Jacopo Ferrarotti, Sandro Bottaro, Andrea Pérez-Villa, and Giovanni Bussi. + Accurate multiple time step in biased molecular simulations. Journal of chemical theory and +computation, 11:139--146, 2015. +

+

+ [12]   Eric Darve, David Rodríguez-Gómez, and Andrew Pohorille. Adaptive biasing force + method for scalar and vector free energy calculations. J. Chem. Phys., 128(14):144120, + 2008. +

+

+ [13]   J. Hénin and C. Chipot. Overcoming free energy barriers using unconstrained molecular + dynamics simulations. J. Chem. Phys., 121:2904--2914, 2004. +

+

+ [14]   Jérôme Hénin, Giacomo Fiorin, Christophe Chipot, and Michael L. Klein. Exploring + multidimensional free energy landscapes using time-dependent biases on collective + variables. J. Chem. Theory Comput., 6(1):35--47, 2010. +

+

+ [15]   A. Carter, E, G. Ciccotti, J. T. Hynes, and R. Kapral. Constrained reaction coordinate + dynamics for the simulation of rare events. Chem. Phys. Lett., 156:472--477, 1989. +

+

+ [16]   M. J. Ruiz-Montero, D. Frenkel, and J. J. Brey. Efficient schemes to compute diffusive + barrier crossing rates. Mol. Phys., 90:925--941, 1997. +

+

+ [17]   W. K. den Otter. Thermodynamic integration of the free energy along a reaction + coordinate in cartesian coordinates. J. Chem. Phys., 112:7283--7292, 2000. + + +

+

+ [18]   Giovanni Ciccotti, Raymond Kapral, and Eric Vanden-Eijnden. Blue moon sampling, + vectorial reaction coordinates, and unbiased constrained dynamics. ChemPhysChem, + 6(9):1809--1814, 2005. +

+

+ [19]   J. Hénin. Fast and accurate multidimensional free energy integration. J. Chem. Theory +Comput., 2021. +

+

+ [20]   Adrien Lesage, Tony Lelièvre, Gabriel Stoltz, and Jérôme Hénin. Smoothed biasing + forces yield unbiased free energies with the extended-system adaptive biasing force method. + J. Phys. Chem. B, 121(15):3676--3685, 2017. +

+

+ [21]   Massimo Marchi and Pietro Ballone. Adiabatic bias molecular dynamics: A method + to navigate the conformational space of complex molecular systems. J. Chem. Phys., + 110(8):3697--3702, 1999. +

+

+ [22]   A. Laio and M. Parrinello. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA, + 99(20):12562--12566, 2002. +

+

+ [23]   Helmut Grubmüller. Predicting slow structural transitions in macromolecular systems: + Conformational flooding. Phys. Rev. E, 52(3):2893--2906, Sep 1995. +

+

+ [24]   T. Huber, A. E. Torda, and W.F. van Gunsteren. Local elevation - A method for improving + the searching properties of molecular-dynamics simulation. Journal of Computer-Aided +Molecular Design, 8(6):695--708, DEC 1994. +

+

+ [25]   G. Bussi, A. Laio, and M. Parrinello. Equilibrium free energies from nonequilibrium + metadynamics. Phys. Rev. Lett., 96(9):090601, 2006. +

+

+ [26]   Fabrizio Marinelli, Fabio Pietrucci, Alessandro Laio, and Stefano Piana. A kinetic model of + trp-cage folding from multiple biased molecular dynamics simulations. PLOS Computational +Biology, 5(8):1--18, 2009. + + +

+

+ [27]   Yanier Crespo, Fabrizio Marinelli, Fabio Pietrucci, and Alessandro Laio. Metadynamics + convergence law in a multidimensional system. Phys. Rev. E, 81:055701, May 2010. +

+

+ [28]   Fabrizio Marinelli and José D. Faraldo-Gómez. Ensemble-biased metadynamics: + A molecular simulation method to sample experimental distributions. Biophys. J., + 108(12):2779--2782, 2015. +

+

+ [29]   Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-tempered + metadynamics: A smoothly converging and tunable free-energy method. Phys. Rev. Lett., + 100:020603, 2008. +

+

+ [30]   P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, and M. Parrinello. Efficient + reconstruction of complex free energy landscapes by multiple walkers metadynamics. J. +Phys. Chem. B, 110(8):3533--9, 2006. +

+

+ [31]   Yuqing Deng and Benoît Roux. Computations of standard binding free energies with + molecular dynamics simulations. J. Phys. Chem. B, 113(8):2234--2246, 2009. +

+

+ [32]   Jed W. Pitera and John D. Chodera. On the use of experimental observations to bias + simulated ensembles. J. Chem. Theory Comput., 8:3445--3451, 2012. +

+

+ [33]   Andrew D. White and Gregory A. Voth. Efficient and minimal method to bias molecular + simulations with experimental data. J. Chem. Theory Comput., 10(8):3023----3030, 2014. +

+

+ [34]   Rong Shen, Wei Han, Giacomo Fiorin, Shahidul M Islam, Klaus Schulten, and Benoît + Roux. Structural refinement of proteins by restrained molecular dynamics simulations with + non-interacting molecular fragments. PLoS Comput. Biol., 11(10):e1004368, 2015. +

+
+

+ + diff --git a/lammps-stable_29Aug2024/colvars-refman-lammps.pdf b/lammps-stable_29Aug2024/colvars-refman-lammps.pdf new file mode 100644 index 00000000..bfb25106 Binary files /dev/null and b/lammps-stable_29Aug2024/colvars-refman-lammps.pdf differ diff --git a/lammps-stable_29Aug2024/cover-512px.jpg b/lammps-stable_29Aug2024/cover-512px.jpg new file mode 100644 index 00000000..242a22f7 Binary files /dev/null and b/lammps-stable_29Aug2024/cover-512px.jpg differ diff --git a/lammps-stable_29Aug2024/eulerangles-512px.png b/lammps-stable_29Aug2024/eulerangles-512px.png new file mode 100644 index 00000000..7d458a55 Binary files /dev/null and b/lammps-stable_29Aug2024/eulerangles-512px.png differ