Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow option to use DataGeometry objects à la scikit-learn pipelines #227

Open
paxtonfitzpatrick opened this issue Dec 16, 2019 · 0 comments

Comments

@paxtonfitzpatrick
Copy link
Member

Currently, if you want to repeatedly transform text samples with hypertools.tools.format_data() using the same parameters, the function re-fits both the vectorizer and text model on each call. This ends up being fairly inefficient, and for expensive/numerous operations, makes working directly with the underlying sklearn classes the better option.

We could add an argument to return the fit models for reuse, but a really nice feature would be something like a scikit-learn Pipeline object that you could create, fit, save, and reuse to perform various processing steps with a single call. This would also be a very attractive feature for hypertools, since it could also additionally implement methods like .plot() and .describe().

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant