-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
280 lines (223 loc) · 7.35 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-"
)
```
# CimpleG <img src="man/figures/CimpleG_logo.png" align = "right" width = "120" />
## Overview
CimpleG, an R package to find (small) CpG signatures.
[![R-CMD-check](https://github.com/CostaLab/CimpleG/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/CostaLab/CimpleG/actions/workflows/R-CMD-check.yaml)
`r badger::badge_devel("CostaLab/CimpleG", "green")`
`r badger::badge_doi("10.1186/s13059-023-03000-0", "blue")`
## Installation
```{r install, eval = FALSE}
# Install directly from github:
devtools::install_github("costalab/CimpleG")
# Alternatively, downloading from our release page and installing it from a local source:
# - ie navigating through your system
install.packages(file.choose(), repos = NULL, type = "source")
# - ie given a path to a local source
install.packages("~/Downloads/CimpleG_0.0.5.XXXX.tar.gz", repos = NULL, type = "source")
# or
devtools::install_local("~/Downloads/CimpleG_0.0.5.XXXX.tar.gz")
```
## Getting started
```{r get_started, eval = TRUE, echo = TRUE, results='hide', message=FALSE, warning=FALSE}
library("CimpleG")
data(train_data)
data(train_targets)
data(test_data)
data(test_targets)
# check the train_targets table to see
# what other columns can be used as targets
# colnames(train_targets)
# mini example with just 4 target signatures
set.seed(42)
cimpleg_result <- CimpleG(
train_data = train_data,
train_targets = train_targets,
test_data = test_data,
test_targets = test_targets,
method = "CimpleG",
has_annotation = TRUE,
target_columns = c(
"neurons",
"glia",
"blood_cells",
"fibroblasts"
)
)
cimpleg_result$results
```
```{r check_sigs, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
# check generated signatures
cimpleg_result$signatures
```
### Get signature annotation
```{r get_annot, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
# Get it directly from the results object
cimpleg_result$annotation
# or idependently through the "get_cpg_annotation" function
signature_annotation <- get_cpg_annotation(cimpleg_result$signatures)
# check signature annotation
signature_annotation
```
### Plot generated signatures
```{r plot_sigs, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
# adjust target names to match signature names
# check generated signatures
plt <- signature_plot(
cimpleg_result,
train_data,
train_targets,
sample_id_column = "gsm",
true_label_column = "cell_type"
)
print(plt$plot)
```
## Difference of means vs Sum of variances (dmsv) plots
### basic plot
```{r dmsv_plots, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
plt <- diffmeans_sumvariance_plot(
data = train_data,
target_vector = train_targets$neurons == 1
)
print(plt)
```
### adding color, highlighting selected features
```{r hl_feats_plt, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
df_dmeansvar <- compute_diffmeans_sumvar(
data = train_data,
target_vector = train_targets$neurons == 1
)
parab_param <- .7
df_dmeansvar$is_selected <- select_features(
x = df_dmeansvar$diff_means,
y = df_dmeansvar$sum_variance,
a = parab_param
)
plt <- diffmeans_sumvariance_plot(
data = df_dmeansvar,
label_var1 = "Neurons",
color_all_points = "purple",
threshold_func = function(x, a) (a * x) ^ 2,
is_feature_selected_col = "is_selected",
func_factor = parab_param
)
print(plt)
```
### labeling specific features
```{r label_feats, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
plt <- diffmeans_sumvariance_plot(
data = df_dmeansvar,
feats_to_highlight = cimpleg_result$signatures
)
print(plt)
```
## Deconvolution plots
### mini example with just 4 signatures
```{r deconv_bar_plt, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
deconv_result <- run_deconvolution(
cpg_obj = cimpleg_result,
new_data = test_data
)
plt <- deconvolution_barplot(
deconvoluted_data = deconv_result,
meta_data = test_targets,
sample_id = "gsm",
true_label = "cell_type"
)
print(plt$plot)
```
### this example is a little more advanced
#### first lets create additional deconvolution results so that we can compare them
In this example, we'll create two additional models made with CimpleG.
One using only hypermethylated signatures, and the other using 3 CpGs per signature instead of just one.
```{r deconv_adv, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
set.seed(42)
cimpleg_hyper <- CimpleG(
train_data = train_data,
train_targets = train_targets,
test_data = test_data,
test_targets = test_targets,
method = "CimpleG",
pred_type = "hyper",
target_columns = c(
"neurons",
"glia",
"blood_cells",
"fibroblasts"
)
)
deconv_hyper <- run_deconvolution(
cpg_obj = cimpleg_hyper,
new_data = test_data
)
set.seed(42)
cimpleg_3sigs <- CimpleG(
train_data = train_data,
train_targets = train_targets,
test_data = test_data,
test_targets = test_targets,
method = "CimpleG",
n_sigs = 3,
target_columns = c(
"neurons",
"glia",
"blood_cells",
"fibroblasts"
)
)
deconv_3sigs <- run_deconvolution(
cpg_obj = cimpleg_3sigs,
new_data = test_data
)
```
#### let's also create some fake true values just so that we can compare all the results
#### remember this is just an example, the results themselves are meaningless!
```{r deconv_dat, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
deconv_3sigs$prop_3sigs <- deconv_3sigs$proportion
deconv_hyper$prop_hyper <- deconv_hyper$proportion
deconv_result$prop_cimpleg <- deconv_result$proportion
dummy_deconvolution_data <-
deconv_result |>
dplyr::mutate(true_vals = proportion + runif(nrow(deconv_result), min=-0.1,max=0.1)) |>
dplyr::select(cell_type,sample_id,prop_cimpleg,true_vals) |>
dplyr::left_join(deconv_hyper |> dplyr::select(-proportion), by=c("sample_id","cell_type")) |>
dplyr::left_join(deconv_3sigs |> dplyr::select(-proportion), by=c("sample_id","cell_type")) |>
dplyr::mutate_if(is.numeric, function(x){ifelse(x<0,0,x)}) |>
dplyr::mutate_if(is.numeric, function(x){ifelse(x>1,1,x)}) |>
tibble::as_tibble()
```
#### let's now make use of some plotting functions designed to compare deconvolution results
#### first we can check how the true values compare against the predicted values
```{r deconv_pred_obs_plt, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE, fig.dim = c(12, 12)}
scatter_plts <- CimpleG:::deconv_pred_obs_plot(
deconv_df = dummy_deconvolution_data,
true_values_col = "true_vals",
predicted_cols = c("prop_cimpleg","prop_hyper","prop_3sigs"),
sample_id_col = "sample_id",
group_col= "cell_type"
)
scatter_panel <- scatter_plts |> patchwork::wrap_plots(ncol=1)
print(scatter_panel)
```
#### now, more interestingly, we can see in detail and rank one of the measures used to evaluate the deconvolution results
```{r deconv_rank_plt, eval = TRUE, echo = TRUE, message=FALSE, warning=FALSE}
rank_plts <- CimpleG:::deconv_ranking_plot(
deconv_df = dummy_deconvolution_data,
true_values_col = "true_vals",
predicted_cols = c("prop_cimpleg","prop_hyper","prop_3sigs"),
sample_id_col = "sample_id",
group_col= "cell_type",
metrics = "rmse"
)
rank_panel <- list(rank_plts$perf_boxplt[[1]],rank_plts$nemenyi_plt[[1]]) |> patchwork::wrap_plots()
print(rank_panel)
```