欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
看完这篇文章虽然不能打十个,但是可以迅速打八个!而且够快!
学会二叉树的层序遍历,可以一口气撸完leetcode上八道题目:
- 102.二叉树的层序遍历
- 107.二叉树的层次遍历II
- 199.二叉树的右视图
- 637.二叉树的层平均值
- 429.N叉树的前序遍历
- 515.在每个树行中找最大值
-
- 填充每个节点的下一个右侧节点指针
- 117.填充每个节点的下一个右侧节点指针II
题目地址:https://leetcode-cn.com/problems/binary-tree-level-order-traversal/
给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。
思路:
我们之前讲过了三篇关于二叉树的深度优先遍历的文章:
接下来我们再来介绍二叉树的另一种遍历方式:层序遍历。
层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。
需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而是用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。
而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。
使用队列实现二叉树广度优先遍历,动画如下:
这样就实现了层序从左到右遍历二叉树。
代码如下:这份代码也可以作为二叉树层序遍历的模板,以后再打七个就靠它了。
C++代码:
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) {
int size = que.size();
vector<int> vec;
// 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(vec);
}
return result;
}
};
此时我们就掌握了二叉树的层序遍历了,那么如下五道leetcode上的题目,只需要修改模板的一两行代码(不能再多了),便可打倒!
题目链接:https://leetcode-cn.com/problems/binary-tree-level-order-traversal-ii/
给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)
思路:
相对于102.二叉树的层序遍历,就是最后把result数组反转一下就可以了。
C++代码:
class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) {
int size = que.size();
vector<int> vec;
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(vec);
}
reverse(result.begin(), result.end()); // 在这里反转一下数组即可
return result;
}
};
题目链接:https://leetcode-cn.com/problems/binary-tree-right-side-view/
给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
思路:
层序遍历的时候,判断是否遍历到单层的最后面的元素,如果是,就放进result数组中,随后返回result就可以了。
C++代码:
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<int> result;
while (!que.empty()) {
int size = que.size();
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
if (i == (size - 1)) result.push_back(node->val); // 将每一层的最后元素放入result数组中
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
}
return result;
}
};
题目链接:https://leetcode-cn.com/problems/average-of-levels-in-binary-tree/
给定一个非空二叉树, 返回一个由每层节点平均值组成的数组。
思路:
本题就是层序遍历的时候把一层求个总和在取一个均值。
C++代码:
class Solution {
public:
vector<double> averageOfLevels(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<double> result;
while (!que.empty()) {
int size = que.size();
double sum = 0; // 统计每一层的和
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
sum += node->val;
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(sum / size); // 将每一层均值放进结果集
}
return result;
}
};
题目链接:https://leetcode-cn.com/problems/n-ary-tree-level-order-traversal/
给定一个 N 叉树,返回其节点值的层序遍历。 (即从左到右,逐层遍历)。
例如,给定一个 3叉树 :
返回其层序遍历:
[ [1], [3,2,4], [5,6] ]
思路:
这道题依旧是模板题,只不过一个节点有多个孩子了
C++代码:
class Solution {
public:
vector<vector<int>> levelOrder(Node* root) {
queue<Node*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) {
int size = que.size();
vector<int> vec;
for (int i = 0; i < size; i++) {
Node* node = que.front();
que.pop();
vec.push_back(node->val);
for (int i = 0; i < node->children.size(); i++) { // 将节点孩子加入队列
if (node->children[i]) que.push(node->children[i]);
}
}
result.push_back(vec);
}
return result;
}
};
题目链接:https://leetcode-cn.com/problems/find-largest-value-in-each-tree-row/
您需要在二叉树的每一行中找到最大的值。
思路:
层序遍历,取每一层的最大值
C++代码:
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<int> result;
while (!que.empty()) {
int size = que.size();
int maxValue = INT_MIN; // 取每一层的最大值
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
maxValue = node->val > maxValue ? node->val : maxValue;
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(maxValue); // 把最大值放进数组
}
return result;
}
};
题目链接:https://leetcode-cn.com/problems/populating-next-right-pointers-in-each-node/
给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。
思路:
本题依然是层序遍历,只不过在单层遍历的时候记录一下本层的头部节点,然后在遍历的时候让前一个节点指向本节点就可以了
C++代码:
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if (root != NULL) que.push(root);
while (!que.empty()) {
int size = que.size();
vector<int> vec;
Node* nodePre;
Node* node;
for (int i = 0; i < size; i++) {
if (i == 0) {
nodePre = que.front(); // 取出一层的头结点
que.pop();
node = nodePre;
} else {
node = que.front();
que.pop();
nodePre->next = node; // 本层前一个节点next指向本节点
nodePre = nodePre->next;
}
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
nodePre->next = NULL; // 本层最后一个节点指向NULL
}
return root;
}
};
题目地址:https://leetcode-cn.com/problems/populating-next-right-pointers-in-each-node-ii/
思路:
这道题目说是二叉树,但116题目说是完整二叉树,其实没有任何差别,一样的代码一样的逻辑一样的味道
C++代码:
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if (root != NULL) que.push(root);
while (!que.empty()) {
int size = que.size();
vector<int> vec;
Node* nodePre;
Node* node;
for (int i = 0; i < size; i++) {
if (i == 0) {
nodePre = que.front(); // 取出一层的头结点
que.pop();
node = nodePre;
} else {
node = que.front();
que.pop();
nodePre->next = node; // 本层前一个节点next指向本节点
nodePre = nodePre->next;
}
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
nodePre->next = NULL; // 本层最后一个节点指向NULL
}
return root;
}
};
二叉树的层序遍历,就是图论中的广度优先搜索在二叉树中的应用,需要借助队列来实现(此时是不是又发现队列的应用了)。
虽然不能一口气打十个,打八个也还行。
- 102.二叉树的层序遍历
- 107.二叉树的层次遍历II
- 199.二叉树的右视图
- 637.二叉树的层平均值
- 429.N叉树的前序遍历
- 515.在每个树行中找最大值
-
- 填充每个节点的下一个右侧节点指针
- 117.填充每个节点的下一个右侧节点指针II
如果非要打十个,还得找叶师傅!
Java:
// 102.二叉树的层序遍历
class Solution {
public List<List<Integer>> resList = new ArrayList<List<Integer>>();
public List<List<Integer>> levelOrder(TreeNode root) {
//checkFun01(root,0);
checkFun02(root);
return resList;
}
//DFS--递归方式
public void checkFun01(TreeNode node, Integer deep) {
if (node == null) return;
deep++;
if (resList.size() < deep) {
//当层级增加时,list的Item也增加,利用list的索引值进行层级界定
List<Integer> item = new ArrayList<Integer>();
resList.add(item);
}
resList.get(deep - 1).add(node.val);
checkFun01(node.left, deep);
checkFun01(node.right, deep);
}
//BFS--迭代方式--借助队列
public void checkFun02(TreeNode node) {
if (node == null) return;
Queue<TreeNode> que = new LinkedList<TreeNode>();
que.offer(node);
while (!que.isEmpty()) {
List<Integer> itemList = new ArrayList<Integer>();
int len = que.size();
while (len > 0) {
TreeNode tmpNode = que.poll();
itemList.add(tmpNode.val);
if (tmpNode.left != null) que.offer(tmpNode.left);
if (tmpNode.right != null) que.offer(tmpNode.right);
len--;
}
resList.add(itemList);
}
}
}
// 107. 二叉树的层序遍历 II
public class N0107 {
/**
* 解法:队列,迭代。
* 层序遍历,再翻转数组即可。
*/
public List<List<Integer>> solution1(TreeNode root) {
List<List<Integer>> list = new ArrayList<>();
Deque<TreeNode> que = new LinkedList<>();
if (root == null) {
return list;
}
que.offerLast(root);
while (!que.isEmpty()) {
List<Integer> levelList = new ArrayList<>();
int levelSize = que.size();
for (int i = 0; i < levelSize; i++) {
TreeNode peek = que.peekFirst();
levelList.add(que.pollFirst().val);
if (peek.left != null) {
que.offerLast(peek.left);
}
if (peek.right != null) {
que.offerLast(peek.right);
}
}
list.add(levelList);
}
List<List<Integer>> result = new ArrayList<>();
for (int i = list.size() - 1; i >= 0; i-- ) {
result.add(list.get(i));
}
return result;
}
}
// 199.二叉树的右视图
public class N0199 {
/**
* 解法:队列,迭代。
* 每次返回每层的最后一个字段即可。
*
* 小优化:每层右孩子先入队。代码略。
*/
public List<Integer> rightSideView(TreeNode root) {
List<Integer> list = new ArrayList<>();
Deque<TreeNode> que = new LinkedList<>();
if (root == null) {
return list;
}
que.offerLast(root);
while (!que.isEmpty()) {
int levelSize = que.size();
for (int i = 0; i < levelSize; i++) {
TreeNode poll = que.pollFirst();
if (poll.left != null) {
que.addLast(poll.left);
}
if (poll.right != null) {
que.addLast(poll.right);
}
if (i == levelSize - 1) {
list.add(poll.val);
}
}
}
return list;
}
}
// 637. 二叉树的层平均值
public class N0637 {
/**
* 解法:队列,迭代。
* 每次返回每层的最后一个字段即可。
*/
public List<Double> averageOfLevels(TreeNode root) {
List<Double> list = new ArrayList<>();
Deque<TreeNode> que = new LinkedList<>();
if (root == null) {
return list;
}
que.offerLast(root);
while (!que.isEmpty()) {
TreeNode peek = que.peekFirst();
int levelSize = que.size();
double levelSum = 0.0;
for (int i = 0; i < levelSize; i++) {
TreeNode poll = que.pollFirst();
levelSum += poll.val;
if (poll.left != null) {
que.addLast(poll.left);
}
if (poll.right != null) {
que.addLast(poll.right);
}
}
list.add(levelSum / levelSize);
}
return list;
}
}
// 429. N 叉树的层序遍历
public class N0429 {
/**
* 解法1:队列,迭代。
*/
public List<List<Integer>> levelOrder(Node root) {
List<List<Integer>> list = new ArrayList<>();
Deque<Node> que = new LinkedList<>();
if (root == null) {
return list;
}
que.offerLast(root);
while (!que.isEmpty()) {
int levelSize = que.size();
List<Integer> levelList = new ArrayList<>();
for (int i = 0; i < levelSize; i++) {
Node poll = que.pollFirst();
levelList.add(poll.val);
List<Node> children = poll.children;
if (children == null || children.size() == 0) {
continue;
}
for (Node child : children) {
if (child != null) {
que.offerLast(child);
}
}
}
list.add(levelList);
}
return list;
}
class Node {
public int val;
public List<Node> children;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, List<Node> _children) {
val = _val;
children = _children;
}
}
}
Python:
Go:
func levelOrder(root *TreeNode) [][]int {
result:=make([][]int,0)
if root==nil{
return result
}
queue:=make([]*TreeNode,0)
queue=append(queue,root)
for len(queue)>0{
list:=make([]int,0)
l:=len(queue)
for i:=0;i<l;i++{
level:=queue[0]
queue=queue[1:]
list=append(list,level.Val)
if level.Left!=nil{
queue=append(queue,level.Left)
}
if level.Right!=nil{
queue=append(queue,level.Right)
}
}
result=append(result,list)
}
return result
}