Skip to content

Latest commit

 

History

History
695 lines (538 loc) · 19.8 KB

0102.二叉树的层序遍历.md

File metadata and controls

695 lines (538 loc) · 19.8 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

二叉树的层序遍历

看完这篇文章虽然不能打十个,但是可以迅速打八个!而且够快!

学会二叉树的层序遍历,可以一口气撸完leetcode上八道题目:

  • 102.二叉树的层序遍历
  • 107.二叉树的层次遍历II
  • 199.二叉树的右视图
  • 637.二叉树的层平均值
  • 429.N叉树的前序遍历
  • 515.在每个树行中找最大值
    1. 填充每个节点的下一个右侧节点指针
  • 117.填充每个节点的下一个右侧节点指针II

102.二叉树的层序遍历

题目地址:https://leetcode-cn.com/problems/binary-tree-level-order-traversal/

给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。

102.二叉树的层序遍历

思路:

我们之前讲过了三篇关于二叉树的深度优先遍历的文章:

接下来我们再来介绍二叉树的另一种遍历方式:层序遍历。

层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。

需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而是用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。

而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。

使用队列实现二叉树广度优先遍历,动画如下:

102二叉树的层序遍历

这样就实现了层序从左到右遍历二叉树。

代码如下:这份代码也可以作为二叉树层序遍历的模板,以后再打七个就靠它了

C++代码:

class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            // 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(vec);
        }
        return result;
    }
};

此时我们就掌握了二叉树的层序遍历了,那么如下五道leetcode上的题目,只需要修改模板的一两行代码(不能再多了),便可打倒!

107.二叉树的层次遍历 II

题目链接:https://leetcode-cn.com/problems/binary-tree-level-order-traversal-ii/

给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

107.二叉树的层次遍历II

思路:

相对于102.二叉树的层序遍历,就是最后把result数组反转一下就可以了。

C++代码:

class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(vec);
        }
        reverse(result.begin(), result.end()); // 在这里反转一下数组即可
        return result;

    }
};

199.二叉树的右视图

题目链接:https://leetcode-cn.com/problems/binary-tree-right-side-view/

给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

199.二叉树的右视图

思路:

层序遍历的时候,判断是否遍历到单层的最后面的元素,如果是,就放进result数组中,随后返回result就可以了。

C++代码:

class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<int> result;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (i == (size - 1)) result.push_back(node->val); // 将每一层的最后元素放入result数组中
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

637.二叉树的层平均值

题目链接:https://leetcode-cn.com/problems/average-of-levels-in-binary-tree/

给定一个非空二叉树, 返回一个由每层节点平均值组成的数组。

637.二叉树的层平均值

思路:

本题就是层序遍历的时候把一层求个总和在取一个均值。

C++代码:

class Solution {
public:
    vector<double> averageOfLevels(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<double> result;
        while (!que.empty()) {
            int size = que.size();
            double sum = 0; // 统计每一层的和
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                sum += node->val;
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(sum / size); // 将每一层均值放进结果集
        }
        return result;
    }
};

429.N叉树的层序遍历

题目链接:https://leetcode-cn.com/problems/n-ary-tree-level-order-traversal/

给定一个 N 叉树,返回其节点值的层序遍历。 (即从左到右,逐层遍历)。

例如,给定一个 3叉树 :

429. N叉树的层序遍历

返回其层序遍历:

[ [1], [3,2,4], [5,6] ]

思路:

这道题依旧是模板题,只不过一个节点有多个孩子了

C++代码:

class Solution {
public:
    vector<vector<int>> levelOrder(Node* root) {
        queue<Node*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            for (int i = 0; i < size; i++) {
                Node* node = que.front();
                que.pop();
                vec.push_back(node->val);
                for (int i = 0; i < node->children.size(); i++) { // 将节点孩子加入队列
                    if (node->children[i]) que.push(node->children[i]);
                }
            }
            result.push_back(vec);
        }
        return result;

    }
};

515.在每个树行中找最大值

题目链接:https://leetcode-cn.com/problems/find-largest-value-in-each-tree-row/

您需要在二叉树的每一行中找到最大的值。

515.在每个树行中找最大值

思路:

层序遍历,取每一层的最大值

C++代码:

class Solution {
public:
    vector<int> largestValues(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<int> result;
        while (!que.empty()) {
            int size = que.size();
            int maxValue = INT_MIN; // 取每一层的最大值
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                maxValue = node->val > maxValue ? node->val : maxValue;
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(maxValue); // 把最大值放进数组
        }
        return result;
    }
};

116.填充每个节点的下一个右侧节点指针

题目链接:https://leetcode-cn.com/problems/populating-next-right-pointers-in-each-node/

给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。

116.填充每个节点的下一个右侧节点指针

思路:

本题依然是层序遍历,只不过在单层遍历的时候记录一下本层的头部节点,然后在遍历的时候让前一个节点指向本节点就可以了

C++代码:

class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> que;
        if (root != NULL) que.push(root);
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            Node* nodePre;
            Node* node;
            for (int i = 0; i < size; i++) {
                if (i == 0) {
                    nodePre = que.front(); // 取出一层的头结点
                    que.pop();
                    node = nodePre;
                } else {
                    node = que.front();
                    que.pop();
                    nodePre->next = node; // 本层前一个节点next指向本节点
                    nodePre = nodePre->next;
                }
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            nodePre->next = NULL; // 本层最后一个节点指向NULL
        }
        return root;

    }
};

117.填充每个节点的下一个右侧节点指针II

题目地址:https://leetcode-cn.com/problems/populating-next-right-pointers-in-each-node-ii/

思路:

这道题目说是二叉树,但116题目说是完整二叉树,其实没有任何差别,一样的代码一样的逻辑一样的味道

C++代码:

class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> que;
        if (root != NULL) que.push(root);
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            Node* nodePre;
            Node* node;
            for (int i = 0; i < size; i++) {
                if (i == 0) {
                    nodePre = que.front(); // 取出一层的头结点
                    que.pop();
                    node = nodePre;
                } else {
                    node = que.front();
                    que.pop();
                    nodePre->next = node; // 本层前一个节点next指向本节点
                    nodePre = nodePre->next;
                }
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            nodePre->next = NULL; // 本层最后一个节点指向NULL
        }
        return root;
    }
};

总结

二叉树的层序遍历,就是图论中的广度优先搜索在二叉树中的应用,需要借助队列来实现(此时是不是又发现队列的应用了)。

虽然不能一口气打十个,打八个也还行。

  • 102.二叉树的层序遍历
  • 107.二叉树的层次遍历II
  • 199.二叉树的右视图
  • 637.二叉树的层平均值
  • 429.N叉树的前序遍历
  • 515.在每个树行中找最大值
    1. 填充每个节点的下一个右侧节点指针
  • 117.填充每个节点的下一个右侧节点指针II

如果非要打十个,还得找叶师傅!

我要打十个

其他语言版本

Java:

// 102.二叉树的层序遍历
class Solution {
    public List<List<Integer>> resList = new ArrayList<List<Integer>>();

    public List<List<Integer>> levelOrder(TreeNode root) {
        //checkFun01(root,0);
        checkFun02(root);

        return resList;
    }

    //DFS--递归方式
    public void checkFun01(TreeNode node, Integer deep) {
        if (node == null) return;
        deep++;

        if (resList.size() < deep) {
            //当层级增加时,list的Item也增加,利用list的索引值进行层级界定
            List<Integer> item = new ArrayList<Integer>();
            resList.add(item);
        }
        resList.get(deep - 1).add(node.val);

        checkFun01(node.left, deep);
        checkFun01(node.right, deep);
    }

    //BFS--迭代方式--借助队列
    public void checkFun02(TreeNode node) {
        if (node == null) return;
        Queue<TreeNode> que = new LinkedList<TreeNode>();
        que.offer(node);

        while (!que.isEmpty()) {
            List<Integer> itemList = new ArrayList<Integer>();
            int len = que.size();

            while (len > 0) {
                TreeNode tmpNode = que.poll();
                itemList.add(tmpNode.val);

                if (tmpNode.left != null) que.offer(tmpNode.left);
                if (tmpNode.right != null) que.offer(tmpNode.right);
                len--;
            }

            resList.add(itemList);
        }

    }
}
    

// 107. 二叉树的层序遍历 II
public class N0107 {

    /**
     * 解法:队列,迭代。
     * 层序遍历,再翻转数组即可。
     */
    public List<List<Integer>> solution1(TreeNode root) {
        List<List<Integer>> list = new ArrayList<>();
        Deque<TreeNode> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            List<Integer> levelList = new ArrayList<>();

            int levelSize = que.size();
            for (int i = 0; i < levelSize; i++) {
                TreeNode peek = que.peekFirst();
                levelList.add(que.pollFirst().val);

                if (peek.left != null) {
                    que.offerLast(peek.left);
                }
                if (peek.right != null) {
                    que.offerLast(peek.right);
                }
            }
            list.add(levelList);
        }

        List<List<Integer>> result = new ArrayList<>();
        for (int i = list.size() - 1; i >= 0; i-- ) {
            result.add(list.get(i));
        }

        return result;
    }
}

// 199.二叉树的右视图
public class N0199 {
    /**
     * 解法:队列,迭代。
     * 每次返回每层的最后一个字段即可。
     *
     * 小优化:每层右孩子先入队。代码略。
     */
    public List<Integer> rightSideView(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        Deque<TreeNode> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            int levelSize = que.size();

            for (int i = 0; i < levelSize; i++) {
                TreeNode poll = que.pollFirst();

                if (poll.left != null) {
                    que.addLast(poll.left);
                }
                if (poll.right != null) {
                    que.addLast(poll.right);
                }

                if (i == levelSize - 1) {
                    list.add(poll.val);
                }
            }
        }

        return list;
    }
}

// 637. 二叉树的层平均值
public class N0637 {

    /**
     * 解法:队列,迭代。
     * 每次返回每层的最后一个字段即可。
     */
    public List<Double> averageOfLevels(TreeNode root) {
        List<Double> list = new ArrayList<>();
        Deque<TreeNode> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            TreeNode peek = que.peekFirst();

            int levelSize = que.size();
            double levelSum = 0.0;
            for (int i = 0; i < levelSize; i++) {
                TreeNode poll = que.pollFirst();

                levelSum += poll.val;

                if (poll.left != null) {
                    que.addLast(poll.left);
                }
                if (poll.right != null) {
                    que.addLast(poll.right);
                }
            }
            list.add(levelSum / levelSize);
        }
        return list;
    }
}

// 429. N 叉树的层序遍历
public class N0429 {
    /**
     * 解法1:队列,迭代。
     */
    public List<List<Integer>> levelOrder(Node root) {
        List<List<Integer>> list = new ArrayList<>();
        Deque<Node> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            int levelSize = que.size();
            List<Integer> levelList = new ArrayList<>();

            for (int i = 0; i < levelSize; i++) {
                Node poll = que.pollFirst();

                levelList.add(poll.val);

                List<Node> children = poll.children;
                if (children == null || children.size() == 0) {
                    continue;
                }
                for (Node child : children) {
                    if (child != null) {
                        que.offerLast(child);
                    }
                }
            }
            list.add(levelList);
        }

        return list;
    }

    class Node {
        public int val;
        public List<Node> children;

        public Node() {}

        public Node(int _val) {
            val = _val;
        }

        public Node(int _val, List<Node> _children) {
            val = _val;
            children = _children;
        }
    }
}

Python:

Go:

func levelOrder(root *TreeNode) [][]int  {
	result:=make([][]int,0)
	if root==nil{
		return result
	}

	queue:=make([]*TreeNode,0)
	queue=append(queue,root)

	for len(queue)>0{
		list:=make([]int,0)
		l:=len(queue)

		for i:=0;i<l;i++{
			level:=queue[0]
			queue=queue[1:]
			list=append(list,level.Val)
			if level.Left!=nil{
				queue=append(queue,level.Left)
			}
			if level.Right!=nil{
				queue=append(queue,level.Right)
			}
		}
		result=append(result,list)
	}
	return result
}