from pathlib import Path
from snowflake.connector import connect
import pandas as pd
import hashlib
def get_df(query, env, use_cache=True):
print(f'{query[:100] = }')
if env == "prod":
role = "COSUTMER"
warehouse = "CLOWN_COSTUMES"
elif env == "sand":
role = "CUSTOMER"
warehouse = "CUSTOMER_INFORMATION"
else:
raise ValueError(f"env must be prod or sand - recieved: {env}")
hash_query_4_digits = hashlib.shake_128(query.encode()).hexdigest(4)
cache_pkl_path = Path(f"/tmp/cache-{env}-{hash_query_4_digits}.pkl")
print(cache_pkl_path.exists(), cache_pkl_path)
if cache_pkl_path.exists() and use_cache:
print('loading cached data')
df = pd.read_pickle(cache_pkl_path)
return df
print("fetching & caching data")
with connect(
authenticator="externalbrowser",
user="[email protected]",
account=f"company-{env}",
role=role,
warehouse=warehouse,
) as con:
cur = con.cursor()
cur.execute(query)
df = cur.fetch_pandas_all()
df.to_pickle(cache_pkl_path)
return df
# install new kernel "my_new_env"
ipykernel install --user --name=my_new_env
# remove kernel "my_old_env"
jupyter kernelspec list
jupyter kernelspec remove my_old_env
Add the snippet to the end of your notebook to alert you when it's done running.
from IPython.display import Audio, display
# https://www2.cs.uic.edu/~i101/SoundFiles/
url1 = 'https://www2.cs.uic.edu/~i101/SoundFiles/StarWars3.wav'
url2 = 'https://sound.peal.io/ps/audios/000/000/537/original/woo_vu_luvub_dub_dub.wav'
url3 = 'https://www2.cs.uic.edu/~i101/SoundFiles/CantinaBand3.wav'
display(Audio(url=url3, autoplay=True))