forked from KinglittleQ/GST-Tacotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Modules.py
182 lines (145 loc) · 5.26 KB
/
Modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
import torch.nn.functional as F
from Hyperparameters import Hyperparameters as hp
class Conv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding='same'):
'''
inputs: [N, T, C_in]
outputs: [N, T, C_out]
'''
super().__init__()
if padding == 'same':
left = (kernel_size - 1) // 2
right = (kernel_size - 1) - left
self.pad = (left, right)
# pad = kernel_size // 2
else:
self.pad = (0, 0)
self.conv1d = nn.Conv1d(in_channels, out_channels, kernel_size, stride)
def forward(self, inputs):
inputs = torch.transpose(inputs, 1, 2) # [N, C_in, T]
inputs = F.pad(inputs, self.pad)
out = self.conv1d(inputs) # [N, C_out, T]
out = torch.transpose(out, 1, 2) # [N, T, C_out]
return out
class Highway(nn.Module):
def __init__(self, in_features, out_features):
'''
inputs: [N, T, C]
outputs: [N, T, C]
'''
super().__init__()
self.linear1 = nn.Linear(in_features, out_features)
self.linear2 = nn.Linear(in_features, out_features)
def forward(self, inputs):
H = self.linear1(inputs)
H = F.relu(H)
T = self.linear2(inputs)
T = F.sigmoid(T)
out = H * T + inputs * (1.0 - T)
return out
class Conv1dBank(nn.Module):
'''
inputs: [N, T, C_in]
outputs: [N, T, C_out * K] # same padding
Args:
in_channels: E//2
out_channels: E//2
'''
def __init__(self, K, in_channels, out_channels):
super().__init__()
self.bank = nn.ModuleList()
for k in range(1, K + 1):
self.bank.append(Conv1d(in_channels, out_channels, kernel_size=k))
self.bn = BatchNorm1d(out_channels * K)
def forward(self, inputs):
outputs = self.bank[0](inputs)
for k in range(1, len(self.bank)):
output = self.bank[k](inputs)
outputs = torch.cat([outputs, output], dim=2)
outputs = self.bn(outputs) # [N, T, C_out * K]
outputs = F.relu(outputs)
return outputs
class BatchNorm1d(nn.Module):
'''
inputs: [N, T, C]
outputs: [N, T, C]
'''
def __init__(self, num_features):
super().__init__()
self.bn = nn.BatchNorm1d(num_features)
def forward(self, inputs):
out = self.bn(inputs.transpose(1, 2).contiguous())
return out.transpose(1, 2)
class PreNet(nn.Module):
'''
inputs: [N, T, in]
outputs: [N, T, E // 2]
'''
def __init__(self, in_features):
super().__init__()
self.linear1 = nn.Linear(in_features, hp.E)
self.linear2 = nn.Linear(hp.E, hp.E // 2)
self.dropout1 = nn.Dropout(hp.dropout_p)
self.dropout2 = nn.Dropout(hp.dropout_p)
def forward(self, inputs):
# print(inputs.data.cpu().numpy())
outputs = self.linear1(inputs)
outputs = F.relu(outputs)
outputs = self.dropout1(outputs)
outputs = self.linear2(outputs)
outputs = F.relu(outputs)
outputs = self.dropout2(outputs)
return outputs
class AttentionRNN(nn.Module):
'''
input:
inputs: [N, T_y, E//2]
memory: [N, T_x, E]
output:
attn_weights: [N, T_y, T_x]
outputs: [N, T_y, E]
hidden: [1, N, E]
T_x --- character len
T_y --- spectrogram len
'''
def __init__(self):
super().__init__()
self.gru = nn.GRU(input_size=hp.E // 2, hidden_size=hp.E, batch_first=True, bidirectional=False)
self.W = nn.Linear(in_features=hp.E, out_features=hp.E, bias=False)
self.U = nn.Linear(in_features=hp.E, out_features=hp.E, bias=False)
self.v = nn.Linear(in_features=hp.E, out_features=1, bias=False)
def forward(self, inputs, memory, prev_hidden=None):
T_x = memory.size(1)
T_y = inputs.size(1)
# inputs = torch.cat([inputs[:, 0, :].unsqueeze(1), inputs[:, :-1, :]], 1)
self.gru.flatten_parameters()
outputs, hidden = self.gru(inputs, prev_hidden) # outputs: [N, T_y, E] hidden: [1, N, E]
w = self.W(outputs).unsqueeze(2).expand(-1, -1, T_x, -1) # [N, T_y, T_x, E]
u = self.U(memory).unsqueeze(1).expand(-1, T_y, -1, -1) # [N, T_y, T_x, E]
attn_weights = self.v(F.tanh(w + u).view(-1, hp.E)).view(-1, T_y, T_x)
attn_weights = F.softmax(attn_weights, 2)
return attn_weights, outputs, hidden
def max_pool1d(inputs, kernel_size, stride=1, padding='same'):
'''
inputs: [N, T, C]
outputs: [N, T // stride, C]
'''
inputs = inputs.transpose(1, 2) # [N, C, T]
if padding == 'same':
left = (kernel_size - 1) // 2
right = (kernel_size - 1) - left
pad = (left, right)
else:
pad = (0, 0)
inputs = F.pad(inputs, pad)
outputs = F.max_pool1d(inputs, kernel_size, stride) # [N, C, T]
outputs = outputs.transpose(1, 2) # [N, T, C]
return outputs
if __name__ == '__main__':
model = AttentionRNN()
inputs = torch.autograd.Variable(torch.randn(10, 22, hp.E // 2))
memory = torch.autograd.Variable(torch.randn(10, 5, hp.E))
out = model(inputs, memory)
print(out[0].size(), out[1].size(), out[2].size())