Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sklearn problem #8

Open
yiming-lzx opened this issue Jul 5, 2022 · 2 comments
Open

sklearn problem #8

yiming-lzx opened this issue Jul 5, 2022 · 2 comments

Comments

@yiming-lzx
Copy link

yiming-lzx commented Jul 5, 2022

Send train process event:
http://localhost:8000/api/dataset/iris_test_1/feature-series/default/train-job/train_job_iris_test_1_HyperGBM_20220705134148885806
{"type": "optimize", "status": "succeed", "took": 0.16978836059570312, "datetime": 1656999719237, "extension": {"trial_no": 10, "status": "succeed", "extension": {"reward": 3.8680241084247187, "elapsed": 0.16978836059570312, "params": {"missing": NaN, "reg_alpha": 0.01, "learning_rate": 0.001, "missing_values": NaN, "n_estimators": 200, "hp_or": 0, "reg_lambda": 0.01, "max_depth": 5, "hp_lazy": 0}}}}
07-05 13:41:59 I hypernets.c.callbacks.py 196 - trial end. reward:3.8680241084247187, improved:False, elapsed:0.16978836059570312
07-05 13:41:59 I hypernets.c.callbacks.py 197 - Total elapsed:3.091360569000244
07-05 13:41:59 I hypernets.c.callbacks.py 99 - Early stopping on trial : 10, best reward: 0.32170346973301056, best_trial: 5
07-05 13:41:59 I hypergbm.experiment.py 837 - fit_transform final_ensemble
07-05 13:41:59 E hypernets.e._experiment.py 85 - ExperiementID:[None] - ensemble: Unknown label type: (68 6.2
31 5.4
107 7.3
25 5.0
12 4.8
133 6.3
17 5.1
111 6.4
79 5.7
129 7.2
35 5.0
105 7.6
18 5.7
57 4.9
27 5.2
Name: tabular-toolbox__Y, dtype: float64,)
Traceback (most recent call last):
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/hypernets/experiment/_experiment.py", line 75, in run
y_eval=self.y_eval, eval_size=self.eval_size, **kwargs)
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/hypergbm/experiment.py", line 1116, in train
return super().train(hyper_model, X_train, y_train, X_test, X_eval, y_eval, **kwargs)
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/hypergbm/experiment.py", line 839, in train
step.fit_transform(hyper_model, X_train, y_train, X_test=X_test, X_eval=X_eval, y_eval=y_eval, **kwargs)
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/hypergbm/experiment.py", line 549, in fit_transform
ensemble.fit(X_eval, y_eval)
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/tabular_toolbox/ensemble/base_ensemble.py", line 85, in fit
self.fit_predictions(est_predictions, y)
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/tabular_toolbox/ensemble/voting.py", line 106, in fit_predictions
score = self.scorer._score_func(y_true, mean_predictions, **self.scorer._kwargs) * self.scorer._sign
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/sklearn/utils/validation.py", line 63, in inner_f
return f(*args, **kwargs)
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/sklearn/metrics/_classification.py", line 2237, in log_loss
lb.fit(y_true)
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/sklearn/preprocessing/label.py", line 297, in fit
self.classes
= unique_labels(y)
File "/root/anaconda3/envs/py37/lib/python3.7/site-packages/sklearn/utils/multiclass.py", line 98, in unique_labels
raise ValueError("Unknown label type: %s" % repr(ys))
ValueError: Unknown label type: (68 6.2
31 5.4
107 7.3
25 5.0
12 4.8
133 6.3
17 5.1
111 6.4
79 5.7
129 7.2
35 5.0
105 7.6
18 5.7
57 4.9
27 5.2
Name: tabular-toolbox__Y, dtype: float64,)
[13:41:59] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[13:41:59] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[13:41:59] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
Send train process event:
http://localhost:8000/api/dataset/iris_test_1/feature-series/default/train-job/train_job_iris_test_1_HyperGBM_20220705134148885806
{"type": "searched", "status": "succeed", "took": 3.3770127296447754, "datetime": 1656999719469, "extension": null}
Send train process event:
http://localhost:8000/api/dataset/iris_test_1/feature-series/default/train-job/train_job_iris_test_1_HyperGBM_20220705134148885806
{"type": "evaluate", "status": "failed", "took": 2.5987625122070312e-05, "datetime": 1656999719487, "extension": {}}
Traceback (most recent call last):
File "/root/cooka/dataset/iris_test_1/experiments/iris_test_1_2/train.py", line 285, in
raise e
File "/root/cooka/dataset/iris_test_1/experiments/iris_test_1_2/train.py", line 253, in
y_pred = estimator.predict(X_test)
AttributeError: 'NoneType' object has no attribute 'predict'

pip install cooka= 0.1.5
I have try sklean==0.23.1/0.24.2/1.0.0/1.0.5
but it is not work.
all regression task report the same problem
谢谢

@oaksharks
Copy link
Collaborator

Hi yiming-lzx,
it seems that cooka recognizes it as a multi-classification task,
please set the task type to regression on the training page and try again .

@yiming-lzx
Copy link
Author

Hi yiming-lzx, it seems that cooka recognizes it as a multi-classification task, please set the task type to regression on the training page and try again .

not the type of task, when i upgrade deeptables==0.1.13, hypergbm==0.2.3, it works fine.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants