Hypothalamic subfields segmentation pipeline
- T1w image, a T2w image, or both images. Note: Input images to the tool need to be Bias-Field corrected.
- Same as FastSurfer.
- If the T1w and T2w images are available and not co-registered, FreeSurfer should be sourced to run the registration code, and the mri_coreg and mri_vol2vol binaries should also be available.
- EUDAT (FZ Jülich) data repository: https://b2share.fz-juelich.de/records/2af6da63d5c1414b832c1f606bbd068a
- Zenodo data repository: https://zenodo.org/records/11184216
Note: These weights (version 1.1) are retrained compared to paper (version 1.0) for better rotation generalization, performance is equivalent.
- Registration (optional, only required for multi-modal input)
- Hypothalamus Segmentation
- The HypVINN output can be obtained by running the default
run_fastsurfer.sh
script (for more information see FastSurfer documentation). - HypVINN can also be run independently by running
HypVINN/run_prediction.py
, however we recommend running the whole FastSurfer pipeline as it includes all the required pre-processing steps. - HypVINN has the following arguments:
--sid <name>
: Subject ID, the subject data upon which to operate--sd <name>
: Directory in which evaluation results should be written.--t1 </dir/T1**.nii.gz>
: T1 image path--t2 </dir/T2**.nii.gz>
: T2 image path--seg_log
: Path to file in which run logs will be saved. If not set logs will be stored in/sd/sid/scripts/hypvinn_seg.log
--reg_mode
: Ignored, if no T2 image is passed. Specifies the registration method used to register T1 and T2 images. Options are 'coreg' (default) for mri_coreg, 'robust' for mri_robust_register, and 'none' to skip registration (this requires T1 and T2 are externally co-registered).--qc_snap
: Activate the creation of QC snapshots of the predicted HypVINN segmentation in/sd/sid/qc_snapshots
. The created QC snapshots are created to simplify the visual quality control process.
--device
--viewgg_device
--threads
--batch_size
--async_io
--allow_root
--ckpt_cor </dir/to/coronal/ckpt>
: Coronal checkpoint to load, default = $FASTSURFER_ROOT/checkpoints/HypVINN_axial_v1.1.0.pkl--ckpt_ax </dir/to/axial/ckpt>
: Axial checkpoint to load, default = $FASTSURFER_ROOT/checkpoints/HypVINN_coronal_v1.1.0.pkl--ckpt_sag </dir/to/sagittal/ckpt>
: Sagittal checkpoint to load, default = $FASTSURFER_ROOT/checkpoints/HypVINN_sagittal_v1.1.0.pkl
--cfg_cor </dir/to/coronal/cfg>
: Coronal config file to load, default = $FASTSURFER_ROOT/HypVINN/config/HypVINN_coronal_v1.1.0.yaml--cfg_ax </dir/to/axial/cfg>
: Axial config file to load, default = $FASTSURFER_ROOT/HypVINN/config/HypVINN_axial_v1.1.0.yaml--cfg_sag </dir/to/sagittal/cfg>
: Sagittal config file to load, default = $FASTSURFER_ROOT/HypVINN/config/HypVINN_sagittal_v1.1.0.yaml
- The Hypothalamus pipeline can be run by using a T1 a T2 or both images.
- Is recommended that all input images are bias field corrected and when passing both T1 and T2 they need to be co-registered.
- The Hypvinn pipeline can do the registration by itself (step 1). This step can be skipped if images are already registered externally.
- Bias field-corrected images are generated by default by the FastSurfer pipeline; therefore, we recommend running the entire FastSurfer pipeline. If you already have a subject's FastSurfer output without Hypvinn output, check example 5.
-
Run HypVINN pipeline
python HypVINN/run_prediction.py --sid test_subject --sd /output \ --t1 /data/test_subject_t1_bias_field_corrected.nii.gz \ --t2 /data/test_subject_t2_bias_field_corrected.nii.gz \ --reg_mode coreg \ --batch_size 6
-
Run HypVINN pipeline only using a t1
python HypVINN/run_prediction.py --sid test_subject --sd /output \ --t1 /data/test_subject_t1_bias_field_corrected.nii.gz \ --batch_size 6
-
Run HypVINN pipeline without the registration step
python HypVINN/run_prediction.py --sid test_subject --sd /output \ --t1 /data/test_subject_t1_bias_field_corrected.nii.gz \ --t2 /data/test_subject_t2_bias_field_corrected_and_coregistered_to_t1.nii.gz \ --reg_mode none \ --batch_size 6
-
Run HypVINN pipeline with creation of qc snapshots
python HypVINN/run_prediction.py --sid test_subject --sd /output \ --t1 /data/test_subject_t1_bias_field_corrected.nii.gz \ --t2 /data/test_subject_t2_bias_field_corrected.nii.gz \ --reg_mode coreg \ --batch_size 6 --qc_snap
-
Run HypVINN pipeline from an existing FastSurfer subject output -- recommended when FastSurfer output is there without the Hypothalamus module
python HypVINN/run_prediction.py --sid test_subject --sd /output \ --t1 /output/test_subject/mri/orig_nu.mgz \ --seg_log /output/test_subject/scripts/deep-seg.log \ --batch_size 6 --qc_snap
#Output Scheme
|-- output_dir
|--sid
|-- mri : MRI outputs
|--hypothalamus.HypVINN.nii.gz(Hypothalamus Segmentation)
|-- hypothalamus_mask.HypVINN.nii.gz (Hypothalamus Segmentation Mask)
|-- transforms
|-- t2tot1.lta (FreeSurfer registration file, only available if registration is performed)
|-- qc_snapshots : QC outputs (optional)
|-- hypothalamus.HypVINN_qc_screenshoot.png (Coronal quality control image)
|-- stats : Statistics outputs
|-- hypothalamus.HypVINN.stats (Segmentation stats)
Santiago Estrada : [email protected]
If you use the HypVINN module please cite
Santiago Estrada, David Kügler, Emad Bahrami, Peng Xu, Dilshad Mousa, Monique M.B. Breteler, N. Ahmad Aziz, Martin Reuter;
FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and adjacent structures on high-resolutional brain MRI.
Imaging Neuroscience 2023; 1 1–32. doi: https://doi.org/10.1162/imag_a_00034