-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolo.py
109 lines (92 loc) · 2.95 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import cv2
import numpy as np
import time
#from combined_thresh import combined_thresh
#from perspective_transform import perspective_transform
#from Line import Line
#from line_fit import line_fit, tune_fit, final_viz, calc_curve, calc_vehicle_offset
import pickle
#Load yolo
def load_yolo():
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
output_layers = [layer_name for layer_name in net.getUnconnectedOutLayersNames()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
return net, classes, colors, output_layers
def load_image(img_path):
# image loading
img = cv2.imread(img_path)
img = cv2.resize(img, None, fx=0.4, fy=0.4)
height, width, channels = img.shape
return img, height, width, channels
def start_webcam():
cap = cv2.VideoCapture(0)
return cap
def display_blob(blob):
'''
Three images each for RED, GREEN, BLUE channel
'''
for b in blob:
for n, imgb in enumerate(b):
cv2.imshow(str(n), imgb)
def detect_objects(img, net, outputLayers):
blob = cv2.dnn.blobFromImage(img, scalefactor=0.00392, size=(320, 320), mean=(0, 0, 0), swapRB=True, crop=False)
net.setInput(blob)
outputs = net.forward(outputLayers)
return blob, outputs
def get_box_dimensions(outputs, height, width):
boxes = []
confs = []
class_ids = []
for output in outputs:
for detect in output:
scores = detect[5:]
class_id = np.argmax(scores)
conf = scores[class_id]
if conf > 0.3:
center_x = int(detect[0] * width)
center_y = int(detect[1] * height)
w = int(detect[2] * width)
h = int(detect[3] * height)
x = int(center_x - w/2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confs.append(float(conf))
class_ids.append(class_id)
return boxes, confs, class_ids
def draw_labels(boxes, confs, colors, class_ids, classes, img):
indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[i]
cv2.rectangle(img, (x,y), (x+w, y+h), color, 2)
cv2.putText(img, label, (x, y - 5), font, 1, color, 1)
cv2.imshow("Image", img)
def start_video(video_path):
model, classes, colors, output_layers = load_yolo()
cap = cv2.VideoCapture(video_path)
i = 0
while True:
_, frame = cap.read()
if i%5 == 0:
height, width, channels = frame.shape
blob, outputs = detect_objects(frame, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
#frame = annotate_image(frame)
draw_labels(boxes, confs, colors, class_ids, classes, frame)
key = cv2.waitKey(1)
i = i+1
if key == 27:
break
cap.release()
if __name__ == '__main__':
video_path = "project_video.mp4"
start_video(video_path)
cv2.destroyAllWindows()